Development of machine learning models to predict RT-PCR results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with influenza-like symptoms using only basic clinical data

Author:

Langer ThomasORCID,Favarato Martina,Giudici Riccardo,Bassi Gabriele,Garberi Roberta,Villa Fabiana,Gay Hedwige,Zeduri Anna,Bragagnolo Sara,Molteni Alberto,Beretta Andrea,Corradin Matteo,Moreno Mauro,Vismara Chiara,Perno Carlo Federico,Buscema Massimo,Grossi Enzo,Fumagalli Roberto

Abstract

Abstract Background Reverse Transcription-Polymerase Chain Reaction (RT-PCR) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) diagnosis currently requires quite a long time span. A quicker and more efficient diagnostic tool in emergency departments could improve management during this global crisis. Our main goal was assessing the accuracy of artificial intelligence in predicting the results of RT-PCR for SARS-COV-2, using basic information at hand in all emergency departments. Methods This is a retrospective study carried out between February 22, 2020 and March 16, 2020 in one of the main hospitals in Milan, Italy. We screened for eligibility all patients admitted with influenza-like symptoms tested for SARS-COV-2. Patients under 12 years old and patients in whom the leukocyte formula was not performed in the ED were excluded. Input data through artificial intelligence were made up of a combination of clinical, radiological and routine laboratory data upon hospital admission. Different Machine Learning algorithms available on WEKA data mining software and on Semeion Research Centre depository were trained using both the Training and Testing and the K-fold cross-validation protocol. Results Among 199 patients subject to study (median [interquartile range] age 65 [46–78] years; 127 [63.8%] men), 124 [62.3%] resulted positive to SARS-COV-2. The best Machine Learning System reached an accuracy of 91.4% with 94.1% sensitivity and 88.7% specificity. Conclusion Our study suggests that properly trained artificial intelligence algorithms may be able to predict correct results in RT-PCR for SARS-COV-2, using basic clinical data. If confirmed, on a larger-scale study, this approach could have important clinical and organizational implications.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

Reference65 articles.

1. WHO. Pneumonia of unknown cause – China 2020. Available from: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/. [cited 2020 28 February].

2. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. Italy JAMA. 2020;323(16):1574–81.

3. Grasselli G, Greco M, Zanella A, Albano G, Antonelli M, Bellani G, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy. Italy JAMA Intern Med. 2020;180(10):1345–55.

4. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.

5. Mission W-CJ. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 2020. Available from: https://www.who.int/publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19). [cited 2020 10 March].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3