Abstract
Abstract
Background
Motor vehicle collisions remain a common cause of spinal cord injury. Biomechanical studies of spinal movement often lack “real world” context and applicability. Additional data may enhance our understanding of the potential for secondary spinal cord injury. We propose the metric ‘travel’ (total movement) and suggest that our understanding of movement related risk of injury could be improved if travel was routinely reported. We report maximal movement and travel for collar application in vehicle and subsequent self-extrication.
Methods
Biomechanical data on application of cervical collar with the volunteer sat in a vehicle were collected using Inertial Measurement Units on 6 healthy volunteers. Maximal movement and travel are reported. These data and a re-analysis of previously published work is used to demonstrate the utility of travel and maximal movement in the context of self-extrication.
Results
Data from a total of 60 in-vehicle collar applications across three female and three male volunteers was successfully collected for analysis. The mean age across participants was 50.3 years (range 28–68) and the BMI was 27.7 (range 21.5–34.6). The mean maximal anterior–posterior movement associated with collar application was 2.3 mm with a total AP travel of 4.9 mm. Travel (total movement) for in-car application of collar and self-extrication was 9.5 mm compared to 9.4 mm travel for self-extrication without a collar.
Conclusion
We have demonstrated the application of ‘travel’ in the context of self-extrication. Total travel is similar across self-extricating healthy volunteers with and without a collar. We suggest that where possible ‘travel’ is collected and reported in future biomechanical studies in this and related areas of research. It remains appropriate to apply a cervical collar to self-extricating casualties when the clinical target is that of movement minimisation.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine,Emergency Medicine
Reference14 articles.
1. Kumar R, Lim J, Mekary RA, Rattani A, Dewan MC, Sharif SY, et al. Traumatic spinal injury: global epidemiology and worldwide volume. World Neurosurg. 2018;113:e345–63.
2. Nutbeam T, Fenwick R, Hobson C, Holland V, Palmer M. The stages of extrication: a prospective study. Emerg Med J. 2013;31:1006–8.
3. National Directorate For Fire And Emergency Management (NDFFAEM). Road traffic accident handbook. 2009. (Government of Ireland, 2009). https://assets.gov.ie/117530/9f07fa67-a283-4bb4-aeb5-5ca5a6de9eb6.pdf.
4. Dixon M, O’Halloran J, Hannigan A, Keenan S, Cummins NM. Confirmation of suboptimal protocols in spinal immobilisation? Emerg Med J: EMJ. 2015;32:939–45.
5. Nutbeam T, Fenwick R, May B, Stassen W, Smith JE, Wallis L, et al. The role of cervical collars and verbal instructions in minimising spinal movement during self-extrication following a motor vehicle collision—a biomechanical study using healthy volunteers. Scand J Trauma Resusc Emerg Med. 2021;29:108.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献