Real-time AI prediction for major adverse cardiac events in emergency department patients with chest pain

Author:

Zhang Pei-I,Hsu Chien-Chin,Kao Yuan,Chen Chia-Jung,Kuo Ya-Wei,Hsu Shu-Lien,Liu Tzu-Lan,Lin Hung-Jung,Wang Jhi-Joung,Liu Chung-Feng,Huang Chien-ChengORCID

Abstract

Abstract Background A big-data-driven and artificial intelligence (AI) with machine learning (ML) approach has never been integrated with the hospital information system (HIS) for predicting major adverse cardiac events (MACE) in patients with chest pain in the emergency department (ED). Therefore, we conducted the present study to clarify it. Methods In total, 85,254 ED patients with chest pain in three hospitals between 2009 and 2018 were identified. We randomized the patients into a 70%/30% split for ML model training and testing. We used 14 clinical variables from their electronic health records to construct a random forest model with the synthetic minority oversampling technique preprocessing algorithm to predict acute myocardial infarction (AMI) < 1 month and all-cause mortality < 1 month. Comparisons of the predictive accuracies among random forest, logistic regression, support-vector clustering (SVC), and K-nearest neighbor (KNN) models were also performed. Results Predicting MACE using the random forest model produced areas under the curves (AUC) of 0.915 for AMI < 1 month and 0.999 for all-cause mortality < 1 month. The random forest model had better predictive accuracy than logistic regression, SVC, and KNN. We further integrated the AI prediction model with the HIS to assist physicians with decision-making in real time. Validation of the AI prediction model by new patients showed AUCs of 0.907 for AMI < 1 month and 0.888 for all-cause mortality < 1 month. Conclusions An AI real-time prediction model is a promising method for assisting physicians in predicting MACE in ED patients with chest pain. Further studies to evaluate the impact on clinical practice are warranted.

Funder

Chi Mei Medical Center

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3