Abstract
Abstract
Background
The use of machine learning techniques to predict diseases outcomes has grown significantly in the last decade. Several studies prove that the machine learning predictive techniques outperform the classical multivariate techniques. We aimed to build a machine learning predictive model to predict the in-hospital mortality for patients who sustained Traumatic Brain Injury (TBI).
Methods
Adult patients with TBI who were hospitalized in the level 1 trauma center in the period from January 2014 to February 2019 were included in this study. Patients’ demographics, injury characteristics and CT findings were used as predictors. The predictive performance of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) was evaluated in terms of accuracy, Area Under the Curve (AUC), sensitivity, precision, Negative Predictive Value (NPV), specificity and F-score.
Results
A total of 1620 eligible patients were included in the study (1417 survival and 203 non-survivals). Both models achieved accuracy over 91% and AUC over 93%. SVM achieved the optimal performance with accuracy 95.6% and AUC 96%.
Conclusions
for prediction of mortality in patients with TBI, SVM outperformed the well-known classical models that utilized the conventional multivariate analytical techniques.
Publisher
Springer Science and Business Media LLC
Subject
Critical Care and Intensive Care Medicine,Emergency Medicine
Reference45 articles.
1. Andelic N, Anke A, Skandsen T, Sigurdardottir S, Sandhaug M, Ader T, et al. Incidence of hospital-admitted severe traumatic brain injury and in-hospital fatality in Norway: a National Cohort Study. Neuroepidemiology. 2012;38:259–67.
2. Dewan M, Rattani A, Gupta S, Baticulon R, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1–18.
3. Rached M, Gaudet J, Delhumeau C, Walder B. Comparison of two simple models for prediction of short term mortality in patients after severe traumatic brain injury. Injury. 2019;50:65–72.
4. Walder B, Haller G, Rebetez M, Delhumeau C, Bottequin E, Schoettker P, et al. Severe traumatic brain injury in a high-income country: an epidemiological study. J Neurotrauma. 2013;30(23):1934–42.
5. Domingues C, Coimbra R, Poggetti R, Nogueira L, de Sousa R. New Trauma and Injury Severity Score (TRISS) Adjustments for Survival Prediction. World J Emerg Surg. 2018;13:12.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献