Predicting acute coronary syndrome in males and females with chest pain who call an emergency medical communication centre

Author:

Reuter Paul-GeorgesORCID,Pradeau Catherine,Huo Yung Kai Samantha,Lhermusier Thibault,Bourdé Arnaud,Tentillier Eric,Combes Xavier,Bongard Vanina,Ducassé Jean-Louis,Charpentier Sandrine

Abstract

Abstract Background Chest pain is a frequent reason for calls in emergency medical communication centre (EMCC). Detecting a coronary origin by phone is a challenge. This is especially so as the presentations differ according to gender. We aimed to establish and validate a sex-based model to predict a coronary origin of chest pain in patients calling an EMCC. Methods This prospective cohort study enrolled patients at 18 years of age or older who called the EMCC because of non-traumatic chest pain. The main outcome was the diagnosis of acute coronary syndrome (ACS) determined by expert evaluation of patient files. Results During 18 months, 3727 patients were enrolled: 2097 (56%) men and 1630 (44%) women. ACS was diagnosed in 508 (24%) men and 139 (9%) women. For men, independent factors associated with an ACS diagnosis were age, tobacco use, severe and permanent pain; retrosternal, breathing non-related and radiating pain; and additional symptoms. The area under the receiver operating characteristic curve (AUC) was 0.76 (95% confidence interval [CI] 0.73–0.79) for predicting ACS. The accuracy of the male model to predict ACS was validated in a validation dataset (Hosmer-Lemeshow test: p = 0.554); the AUC was 0.77 (95%CI 0.73–0.80). For women, independent factors associated with an ACS diagnosis were age ≥ 60 years, personal history of coronary artery disease, and breathing non-related and radiating pain. The AUC was 0.79 (95%CI 0.75–0.83). The accuracy of the female model to predict ACS was not validated in the validation dataset (Hosmer-Lemeshow test: p = 0.035); the AUC was 0.67 (95%CI 0.60–0.74). Conclusions Predictors of an ACS diagnosis in patients calling an EMCC for chest pain differ between men and women. We developed an accurate predictive model for men, but for women, the accuracy was poor. Trial registration This study is registered with ClinicalTrials.gov (NCT02042209).

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3