The effects of contour-based rainwater harvesting and integrated nutrient management on maize yields in semi-arid regions of Zimbabwe

Author:

Chiturike Pasipanodya,Gotosa Jephta,Nyakudya Innocent Wadzanai,Madamombe Sandra M.,Mandumbu Ronald,Chirinda Ngonidzashe,Kugedera Andrew TapiwaORCID,Nyamadzawo George

Abstract

AbstractIn the smallholder farming areas located in semi-arid regions of Zimbabwe, low and unreliable rainfall distribution and poor soil fertility are the major factors limiting crop production. The negative effects of these biophysical factors have been worsened by climate change. However, the major challenges have been the lack of sustainable, low-cost water and nutrient management technologies for these semi-arid regions. The objectives of this study were to evaluate the effects of contour-based rainwater harvesting (RWH) namely tied contours (TC), infiltration pits (IP) which were compared with the standard contour (STDC), and intergrated nutrient management (INM) where cattle manure was used as basal fertiliser and Ammonium Nitrate (AN) as top dressing, on maize yields. Results showed that fields with RWH had higher yields compared to STDC. Average maize yields were 2210 and 1792 kg ha−1 for TC and IP which were 88% and 52% above STDC (1176 kg ha−1) respectively. Increasing nitrogen (N) levels resulted in a further increase in maize yields. Return on investment was negative during drier years and was significantly higher in RWH systems compared with STDC during wet seasons. Farmers need to reduce mineral fertiliser application during dry seasons since little rainwater is captured. We conclude that contour based RWH and INM can be used as sustainable low cost methods of crop production. Higher fertiliser application rates when rainfall is limiting, do not result in increased return on investiment.

Funder

IFS

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3