Meta-analysis of microarray and RNAseq data reveal OsbZIP52 to mediate salt stress responses in sensitive, tolerant and halophyte rice varieties

Author:

Chatterjee Dipankor,Shohan Mohammad Umer Sharif,Tamanna Nishat,Seraj Zeba I.ORCID

Abstract

AbstractThe development of salt-tolerant rice has become urgent due to climate change and rising global rice consumption. A large-scale analysis using different but related platforms has become imperative to filter out candidate genes responsible for salinity tolerance and salinity stress-responsive pathways. Such genes can be used to find prospective candidate salt resistance genes in donor rice genotypes and transfer them to high-yielding rice varieties. We performed a meta-analysis to screen out candidate genes using stress-related three microarray and one RNASeq datasets from NCBI. As different genotypes of rice and different salinity stress conditions were considered in our analysis, the sensitivity of the results is expected to be multi-fold higher. Our analysis revealed the differentially expressed genes (DEGs) OsbZIP52 and OsLTP2.5 to be common between leaf and root tissues. These genes were further compared with those of the wild halophytic rice Oryza coarctata expression data in stress conditions to understand the significance of these genes. The OsbZIP52 gene homolog of Oryza coarctata was the only one found to be differentially expressed. The expression level of OsbZIP52 was quantified using RT-qPCR and observed downregulated expression in salt stress in root and leaf tissues of four rice cultivars (2 salt-tolerant and 2 salt-sensitive). Promoter and motif analysis revealed a high number of variations in promoter and motif regions of the gene in IR29 salt-sensitive rice. Expression correlation analysis and Gene Ontology study suggested that OsbZIP52 interacts with genes that are engaged in stress response and participate in stress-responsive pathways. Collectively this study increases our understanding of the differential gene expression in various stress conditions in root and leaf tissues. It also helped identify a critical regulatory transcription factor in assisting the plant in combating salinity stress.

Funder

Biotechnology Research Center, University of Dhaka

Publisher

Springer Science and Business Media LLC

Subject

Education,Cultural Studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3