Evaluation of vegetable pigeonpea [Cajanus cajan (L.) Millsp] genotypes for yield stability

Author:

Ojwang J. D.ORCID,Nyankanga R.,Rao N. V. P. R. G. Ganga,Imungi J.

Abstract

Abstract Background Vegetable pigeonpea is an important food security crop in the marginal dry areas of the Eastern region of Kenya. The adaptation and stability of vegetable pigeonpea genotypes across different agro-ecological zones in Kenya are not adequately determined. The objective of this study was to evaluate the yield stability and adaptability of genotypes: KAT 60/8, MZ 2/9, ICEAP 00554, ICEAP 00557 and KIONZA based on additive main effects and multiplicative interactions (AMMI) and Genotype plus genotype by environment (GGE biplot) analysis. Methods Evaluation of vegetable pigeonpea Genotypes was conducted at Kiboko, Katumani and Kambi ya Mawe research stations located in Eastern region and University of Nairobi Field station in central region of Kenya. The genotypes were planted in a Randomized Complete Block design (RCBD), replicated three times at all sites. Rainfall at Kiboko and Kabete were supplemented with irrigation, using sprinklers, for a total of 38 times, providing 832 mm of water. The crop was protected from pests by the application of broad-spectrum, non-systemic, pyrethroid alpha-cypermethrin and dimethoate, after field scouting. All other agronomic and cultural practices were done as recommended for each location. Results Combined analysis of variance (ANOVA) at six environments revealed highly significant (P  < 0.01) variations in G × E interactions for yield (Kg/ha), 100 Seed mass (g/100 seed), days to flower and maturity (P  < 0.05). AMMI model for grain yield interaction principal components analysis (IPCA), explained 96.5% of the total yield variation. The cultivar MZ 2/9 and KAT 60/8 recorded a lower IPCA1, indicating a wider adaptation and stability. Kambi ya Mawe, Katumani and Kiboko had higher IPCA1, indicating greatest interactive environments and adapted genotypes. Kambi ya Mawe, was the most ideal location for evaluating pigeonpea genotypes. While KIONZA was the most ideal genotype for yield performance, MZ 2/9 and KAT 60/8 were most stable with a wider adaptation. Conclusion KIONZA should be used as a reference genotype, while Kambi ya Mawe would be the most ideal location for testing the vegetable pigeonpea genotypes in breeding research. Increased deployment of stable pigeon pea cultivars, MZ 2/9 and KAT 60/8 would enhance food security in the dry areas of Eastern regions of Kenya. These genotypes need to be promoted with farmers for wider adoption in the Eastern region of Kenya.

Publisher

Springer Science and Business Media LLC

Subject

Education,Cultural Studies

Reference59 articles.

1. Ashango Z, Amsalu B, Tumisa K, Negash K, Fikre A. Seed yield stability and genotype × environment interaction of common bean (Phaseolus vulgaris L.) lines in Ethiopia. Int J Plant Breed Crop Sci. 2016;3(2):135–44.

2. FAOSTAT. 2018. FAO statistical database. Rome: Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed 20 Dec 2018.

3. Faris DG, Saxena KB, Mazumdar S, Singh U. Vegetable Pigeon pea: a promising crop in India. ICRISAT, Patancheru, A.P. 502324, India: International Crops Research Institute for the Semi-Arid Tropics; 1987.

4. Farshadfar E. Incorporation of AMMI stability value and grain yield in a single non-parametric index (GSI) in bread wheat. Pak J Biol Sci. 2008;11(14):1791–6.

5. Farshadfar E, Mahmodi N, Yaghotipoor A. AMMI stability value and simultaneous estimation of yield and yield stability in bread wheat (Triticum aestivum L.). Aust J Crop Sci. 2011;13:1837–44.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3