Rethinking methane from animal agriculture

Author:

Liu Shule,Proudman Joe,Mitloehner Frank M.ORCID

Abstract

Abstract Background As the global community actively works to keep temperatures from rising beyond 1.5 °C, predicting greenhouse gases (GHGs) by how they warm the planet—and not their carbon dioxide (CO2) equivalence—provides information critical to developing short- and long-term climate solutions. Livestock, and in particular cattle, have been broadly branded as major emitters of methane (CH4) and significant drivers of climate change. Livestock production has been growing to meet the global food demand, however, increasing demand for production does not necessarily result in the proportional increase of CH4 production. The present paper intends to evaluate the actual effects of the CH4 emission from U.S. dairy and beef production on temperature and initiate a rethinking of CH4 associated with animal agriculture to clarify long-standing misunderstandings and uncover the potential role of animal agriculture in fighting climate change. Methods Two climate metrics, the standard 100-year Global Warming Potential (GWP100) and the recently proposed Global Warming Potential Star (GWP*), were applied to the CH4 emission from the U.S. cattle industry to assess and compare its climate contribution. Results Using GWP*, the projected climate impacts show that CH4 emissions from the U.S. cattle industry have not contributed additional warming since 1986. Calculations show that the California dairy industry will approach climate neutrality in the next ten years if CH4 emissions can be reduced by 1% per year, with the possibility to induce cooling if there are further reductions of emissions. Conclusions GWP* should be used in combination with GWP to provide feasible strategies on fighting climate change induced by short-lived climate pollutants (SLCPs). By continuously improving production efficiency and management practices, animal agriculture can be a short-term solution to fight climate warming that the global community can leverage while developing long-term solutions for fossil fuel carbon emissions.

Publisher

Springer Science and Business Media LLC

Subject

Education,Cultural Studies

Reference65 articles.

1. Abbasi T, Abbasi T, Abbasi SA. Reducing the global environmental impact of livestock production: the minilivestock option. J Clean Prod. 2016. https://doi.org/10.1016/j.jclepro.2015.02.094.

2. Allen MR. Short-lived promise? The science and policy of cumulative and short-lived climate pollutants. Oxford Martin Policy Paper; 2015. http://www.oxfordmartin.ox.ac.uk/downloads/briefings/Short_Lived_Promise.pdf. Accessed 4 Feb 2021.

3. Allen MR, Cain M, Shine K. Climate metrics under ambitious mitigation. Oxford Martin Programme on Climate Pollutants; 2017. https://www.oxfordmartin.ox.ac.uk/downloads/academic/Climate_Metrics_%20Under_%20Ambitious%20_Mitigation.pdf. Accessed 8 Aug 2020

4. Allen MR, Shine KP, Fuglestvedt JS, Millar RJ, Cain M, Frame DJ, Macey AH. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim Atmos Sci. 2018. https://doi.org/10.1038/s41612-018-0026-8.

5. Alvarez RA, Pacala SW, Winebrake JJ, Chameides WL, Hamburg SP. Greater focus needed on methane leakage from natural gas infrastructure. Proc Natl Acad Sci U S A. 2012. https://doi.org/10.1073/pnas.1202407109.

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3