Indirect and direct interactions between grain aphid and parasitoid in the presence of symbiont Regiella insecticola

Author:

Man Yue,Li Delu,Wang Minghui,Hu Zuqing,Gatti Jean-Luc,Desneux Nicolas,Han Peng,Luo ChenORCID

Abstract

Abstract Background Aphids often harbor bacterial symbionts that confer resistance to biotic and abiotic stress. Previous studies have primarily examined the direct effects of symbiont infection on parasitoid success but less on aphid population dynamics under indirect parasitic situations, for example when exposed to parasitoid wasp odor. Deciphering this type of indirect effect is essential for understanding dynamics of insect ecosystems and communities and to improve IPM success. Methods We generated Sitobion avenae aphid clonal lines that are genetically identical but differ in Regiella insecticola infection. Then, the indirect odor effect of female parasitoid wasp Aphidius gifuensis (Ashmaed), one of its major natural enemies in the fields, was examined on the aphid lines fitness using different parasitoid densities. With these lines we also tested the direct effect of symbiont presence on aphid resistance against different parasitoid densities. Results Our study found fitness costs for the aphid line hosting Regiella, mainly via an increase in the development time and a reduction in population increase rate. Some of these fitness traits were influenced by the indirect exposure to parasitoid wasp odor with a density effect. Presence of the symbiont also reduced A. gifuensis parasitic success, increased the wasp development time and decreased its emergence weight with low effect of the parasitoid density used for parasitism. Conclusions These results showed that aphid population dynamic was mainly affected by the symbiont presence, but not by parasitoid odor. Symbiont presence also protected aphid from parasitism and affected parasitoid offspring weight and hence their future individual fertility and fitness.

Publisher

Springer Science and Business Media LLC

Subject

Education,Cultural Studies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3