Author:
Papp David,Gao Liqiang,Thapa Ranjita,Olmstead Dan,Khan Awais
Abstract
Abstract
Background
Breeding for resistance to apple scab (caused by Venturia inaequalis), the most devastating fungal disease of apples, relies on genetic resources maintained in germplasm collections.
Methods
To identify new sources of scab resistance, we evaluated 177 Malus accessions, including 27 primary and 13 hybrid Malus species from diverse geographical origins, in an orchard at Geneva, New York. We also screened a differential host set for 2 years to monitor for changes in the effectiveness of ten known scab resistance genes, which allowed us to confirm the presence of virulent pathogen races in the orchard.
Results
We found that ~ 37% of the wild Malus accessions and domesticated cultivars were resistant to apple scab in the field. Several of these accessions were unrelated to sources of previously known resistance genes and are promising for apple scab genetic research and resistance breeding. Cultivars carrying the Rvi6 (Vf) gene from Malus floribunda clone 821, e.g. ‘Liberty’ or ‘Florina’, remained resistant despite the breakdown of Rvi6. ‘Demir’, a Malus hybrid from Turkey, and ‘Chisel Jersey’, a traditional English hard cider cultivar, showed fewer symptoms than the Rvi6 resistant cultivar ‘Prima’. Races 1 to 7 and 9 of V. inaequalis were present in the orchard, but no scab was observed on the indicator host accessions for races 11 and 12.
Conclusions
Detailed and systematic screening of Malus germplasm identified resistant and moderately resistant donor accessions based on resistance reaction types. These accessions are promising for use in future genetic studies to identify novel sources of scab resistance alleles for apple breeding to develop cultivars with durable apple scab resistance.
Funder
New York State Apple Research and Development Program
Publisher
Springer Science and Business Media LLC
Subject
Education,Cultural Studies
Reference68 articles.
1. Aldwinckle HS, Forsline PL, Gustafson HL, Hokanson SC. Evaluation of apple scab resistance of Malus sieversii populations from Central Asia. HortScience. 1997;32:440.
2. Beckerman J, Chatfield J, Draper E. A 33-year Evaluation of resistance and pathogenicity in the apple scab–crabapples pathosystem. HortScience. 2009;44(3):599–608.
3. Brown S, Maloney K. Scab-resistant cultivars (varieties). N Y Fruit Q. 2008;16(4):3–6.
4. Brown SK, Maloney KE. An update on apple cultivars, brands and club-marketing. N Y Fruit Q. 2013;21(1):3–10.
5. Bus VG, Rikkerink EH, Caffier V, Durel CE, Plummer KM. Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol. 2011;49:391–413.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献