Osteoblast-secreted collagen upregulates paracrine Sonic hedgehog signaling by prostate cancer cells and enhances osteoblast differentiation

Author:

Zunich Samantha M,Valdovinos Maria,Douglas Taneka,Walterhouse David,Iannaccone Philip,Lamm Marilyn L G

Abstract

Abstract Background Induction of osteoblast differentiation by paracrine Sonic hedgehog (Shh) signaling may be a mechanism through which Shh-expressing prostate cancer cells initiate changes in the bone microenvironment and promote metastases. A hallmark of osteoblast differentiation is the formation of matrix whose predominant protein is type 1 collagen. We investigated the formation of a collagen matrix by osteoblasts cultured with prostate cancer cells, and its effects on interactions between prostate cancer cells and osteoblasts. Results In the presence of exogenous ascorbic acid (AA), a co-factor in collagen synthesis, mouse MC3T3 pre-osteoblasts in mixed cultures with human LNCaP prostate cancer cells or LNCaP cells modified to overexpress Shh (LNShh cells) formed collagen matrix with distinct fibril ultrastructural characteristics. AA increased the activity of alkaline phosphatase and the expression of the alkaline phosphatase gene Akp2, markers of osteoblast differentiation, in MC3T3 pre-osteoblasts cultured with LNCaP or LNShh cells. However, the AA-stimulated increase in Akp2 expression in MC3T3 pre-osteoblasts cultured with LNShh cells far exceeded the levels observed in MC3T3 cells cultured with either LNCaP cells with AA or LNShh cells without AA. Therefore, AA and Shh exert a synergistic effect on osteoblast differentiation. We determined whether the effect of AA on LNShh cell-induced osteoblast differentiation was mediated by Shh signaling. AA increased the expression of Gli1 and Ptc1, target genes of the Shh pathway, in MC3T3 pre-osteoblasts cultured with LNShh cells to at least twice their levels without AA. The ability of AA to upregulate Shh signaling and enhance alkaline phosphatase activity was blocked in MC3T3 cells that expressed a dominant negative form of the transcription factor GLI1. The AA-stimulated increase in Shh signaling and Shh-induced osteoblast differentiation was also inhibited by the specific collagen synthesis inhibitor 3,4-dehydro-L-proline. Conclusions Matrix collagen, formed by osteoblasts in the presence of AA, potentiates Shh signaling between Shh-expressing prostate cancer cells and osteoblasts. Collagen and Shh signaling exert a synergistic effect on osteoblast differentiation, a defining event in prostate carcinoma bone metastasis. Investigations into paracrine interactions among prostate cancer cells, osteoblasts, and osteoblast-synthesized matrix proteins advance our understanding of mechanisms contributing to prostate cancer bone metastasis.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Osteoblasts are induced into cancer-associated osteoblasts to promote tumor progression in head and neck squamous cell carcinoma;Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease;2024-10

2. Multiple influence of immune cells in the bone metastatic cancer microenvironment on tumors;Frontiers in Immunology;2024-02-23

3. Basic knowledge and research methods;Bone Cell Biomechanics, Mechanobiology and Bone Diseases;2024

4. Crosstalk with lung fibroblasts shapes the growth and therapeutic response of mesothelioma cells;Cell Death & Disease;2023-11-08

5. Cancer Stem Cells and Prostate Cancer: A Narrative Review;International Journal of Molecular Sciences;2023-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3