Possible role of death receptor-mediated apoptosis by the E3 ubiquitin ligases Siah2 and POSH

Author:

Christian Perry A,Fiandalo Michael V,Schwarze Steven R

Abstract

Abstract Background A functioning ubiquitin proteasome system (UPS) is essential for a number of diverse cellular processes and maintenance of overall cellular homeostasis. The ability of proteasome inhibitors, such as Velcade, to promote extrinsic apoptotic effects illustrates the importance of the ubiquitin proteasome system in the regulation of death receptor signaling. Here, we set out to define the UPS machinery, particularly the E3 ubiquitin ligases, that repress apoptosis through the extrinsic pathway. A cell-based genome-wide E3 ligase siRNA screen was established to monitor caspase-8 activity following the addition of TRAIL. Results Data from the high-throughput screen revealed that targeting the RING-finger containing E3 ligase Siah2 as well as the signaling platform molecule POSH (SH3RF1) conferred robust caspase-8 activation in response to TRAIL stimulus. Silencing Siah2 or POSH in prostate cancer cells led to increased caspase activity and apoptosis in response to both TRAIL and Fas ligand. The E3 activity of Siah2 was responsible for mediating apoptosis resistance; while POSH protein levels were critical for maintaining viability. Further characterization of Siah2 revealed it to function downstream of early death receptor events in the apoptotic pathway. The observed apoptosis resistance provides one biological explanation for the induction of Siah2 and POSH reported in lung and prostate cancer, respectively. Expanding on an initial yeast-two-hybrid screen we have confirmed a physical interaction between E3 ligases Siah2 and POSH. Utilizing a yeast-two-hybrid mapping approach we have defined the spacer region of POSH, more specifically the RPxAxVxP motif encompassing amino acids 601-607, to be the site of Siah2 binding. Conclusions The data presented here define POSH and Siah2 as important mediators of death receptor mediated apoptosis and suggest targeting the interaction of these two E3 ligases is a promising novel cancer therapeutic strategy.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3