Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand-independent manner

Author:

Lei Jianjun,Ma Jiguang,Ma Qingyong,Li Xuqi,Liu Han,Xu Qinhong,Duan Wanxing,Sun Qing,Xu Jun,Wu Zheng,Wu Erxi

Abstract

Abstract Background Hypoxia plays a vital role in cancer epithelial to mesenchymal transition (EMT) and invasion. However, it is not quite clear how hypoxia may contribute to these events. Here we investigate the role of Hedgehog (Hh) signaling in hypoxia induced pancreatic cancer EMT and invasion. Methods Pancreatic cancer cells were cultured under controlled hypoxia conditions (3% O2) or normoxic conditions. HIF-1α siRNA, cyclopamine (a SMO antagonist) and GLI1 siRNA were used to inhibit HIF-1α transcription or Hh signaling activation. The effect of hypoxia and Hh signaling on cancer cell EMT and invasion were evaluated by Quantitative real-time PCR analysis, Western blot analysis and invasion assay. Results Here, we show that non-canonical Hh signaling is required as an important role to switch on hypoxia-induced EMT and invasion in pancreatic cancer cells. Moreover, our data demonstrate hypoxia induces EMT process as well as invasion, and activates the non-canonical Hh pathway without affecting sonic hedgehog homolog (SHH) expression. Moreover, these effects are reversible upon HIF-1α siRNA interference with unchanged SHH and patched1 (PTCH1) level. Furthermore, our data demonstrate that hypoxia induced invasion and EMT process are effectively inhibited by Smoothened (SMO) antagonist cyclopamine and GLI1 siRNA. In addition, GLI1 interference inhibited EMT progress with significantly suppressed vimentin expression, whereas inhibition of SMO through cyclopamine could not reduce vimentin level. This data indicate that hypoxia could trigger other factors (such as TGF-β, KRAS or RTK) bypassing SMO to activate GLI1 directly. Conclusions Our findings suggest that Hh signaling modulates hypoxia induced pancreatic cancer EMT and invasion in a ligand-independent manner. Thus, Hh signaling may represent a promising therapeutic target for preventing pancreatic cancer progression.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3