Oral cancer overexpressed 1 (ORAOV1) regulates cell cycle and apoptosis in cervical cancer HeLa cells

Author:

Jiang Lu,Zeng Xin,Wang Zhi,Ji Ning,Zhou Yu,Liu Xianting,Chen Qianming

Abstract

Abstract Background Oral Cancer Overexpressed 1 (ORAOV1) is a candidate protooncogene locating on 11q13. Recent studies show that ORAOV1 acts as a primary driving force behind 11q13 gene amplification and plays a functional role in the tumorigenesis in a variety of human squamous cell carcinomas (SCCs). According to the results of molecular cytogenetic methods, 11q13 was characterized to be a high-level and recurrent amplification chromosomal site in cervical cancers. Up till now, the role of ORAOV1 in cervical cancer is unknown. The purpose of this study is to elucidate the function of ORAOV1 in cervical cancer cell growth by studying its roles in HeLa cells using small interfering RNA. Results Functional analyses revealed that ORAOV1 was involved in the regulation of HeLa cell growth through its effect on cell cycle and apoptosis. Silence of ORAOV1 in HeLa cells downregulated the expression of Cyclin A, Cyclin B1 and Cdc2, and led to a distinct S cell cycle arrest. Moreover, knockdown of ORAOV1 expression activated both extrinsic and intrinsic apoptotic pathways and led to apoptosis in HeLa cells through its effect on the expression of several apoptosis related proteins such as P53, Bcl-2, Caspase-3, Caspase-8, Caspase-9 and cytochrome c. Interestingly, the expression of Cyclin D1, a pivotal gene for cervical cancer tumorigenesis, was also found to be reduced in ORAOV1 silenced HeLa cells. Conclusion Our findings indicate that ORAOV1 has an important role in regulating cell growth of cervical cancer HeLa cells through regulating the cell cycle and apoptosis. Thus, it may be a crucial protooncogene and a novel candidate therapeutic target for cervical cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3