Correlation between β-catenin mutations and expression of Wnt-signaling target genes in hepatocellular carcinoma
-
Published:2008-02-18
Issue:1
Volume:7
Page:
-
ISSN:1476-4598
-
Container-title:Molecular Cancer
-
language:en
-
Short-container-title:Mol Cancer
Author:
Austinat Madeleine,Dunsch Ruediger,Wittekind Christian,Tannapfel Andrea,Gebhardt Rolf,Gaunitz Frank
Abstract
Abstract
Aberrant Wnt-signaling caused by mutants of β-catenin, a key regulator of the canonical Wnt-signaling pathway, is frequently detected in cancer. Only recently, it was suggested that in hepatocellular carcinoma (HCC) the expression of the target gene glutamine synthetase (GS) is a highly reliable marker for the identification of β-catenin mutations. In order to prove this hypothesis, 52 samples from human hepatocellular carcinomas were analysed for the activation of β-catenin and the expression of GS. In total, 45 samples stained positive for cytoplasmic/nuclear β-catenin. A strong correlation between expression of GS and activated β-catenin (100% of nuclear and 84% of cytosolic) was found. However, among 35 GS positive tumors that were analysed for β-catenin mutations no mutations were detected in 25 GS-positive carcinomas although 24 out of the 25 carcinomas exhibited at least abnormal expression of β-catenin. Since the mutational analysis identified 9 different point mutations of the β-catenin gene including the rare mutation H36P and the yet unknown mutation P44A it was asked whether these mutations may differently effect β-catenin target genes. Therefore, expression plasmids for different mutations were constructed and cotransfected with the TOP-flash luciferase reporter and a reporter carrying the GS-5'-enhancer. The experiments confirmed that there are differences between different β-catenin target sequences and different β-catenin mutations. In addition, the failure that the endogenous expression of GS in GS-negative cells was not induced by the transient transfection experiment indicated that the effect of β-catenin on the GS-5'-enhancer is only one aspect of gene activation induced by β-catenin.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Reference31 articles.
1. Bruix J, Hessheimer AJ, Forner A, Boix L, Vilana R, Llovet JM: New aspects of diagnosis and therapy of hepatocellular carcinoma. Oncogene. 2006, 25: 3848-3856. 2. Buendia MA: Genetics of hepatocellular carcinoma. Semin Cancer Biol. 2000, 10: 185-200. 3. A. LC, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C: Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1998, 95: 8847-8851. 4. Satoh S, Daigo Y, Furukawa Y, Kato T, Miwa N, Nishiwaki T, Kawasoe T, Ishiguro H, Fujita M, Tokino T, Sasaki Y, Imaoka S, Murata M, Shimano T, Yamaoka Y, Nakamura Y: AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000, 24: 245-250. 5. Miyoshi Y, Iwao K, Nagasawa Y, Aihara T, Sasaki Y, Imaoka S, Murata M, Shimano T, Nakamura Y: Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998, 58: 2524-2527.
Cited by
103 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|