Irinotecan induces steroid and xenobiotic receptor (SXR) signaling to detoxification pathway in colon cancer cells

Author:

Basseville Agnes,Preisser Laurence,de Carné Trécesson Sophie,Boisdron-Celle Michèle,Gamelin Erick,Coqueret Olivier,Morel Alain

Abstract

Abstract Background Resistance to chemotherapy remains one of the principle obstacles to the treatment of colon cancer. In order to identify the molecular mechanism of this resistance, we investigated the role of the steroid and xenobiotic receptor (SXR) in the induction of drug resistance. Indeed, this nuclear receptor plays an important role in response to xenobiotics through the upregulation of detoxification genes. Following drug treatments, SXR is activated and interacts with the retinoid X receptor (RXR) to induce expression of some genes involved in drug metabolism such as phase I enzyme (like CYP), phase II enzymes (like UGT) and transporters (e.g. MDR1). Results In this study, we have shown that endogenous SXR is activated in response to SN-38, the active metabolite of the anticancer drug irinotecan, in human colon cancer cell lines. We have found that endogenous SXR translocates into the nucleus and associates with RXR upon SN-38 treatment. Using ChIP, we have demonstrated that endogenous SXR, following its activation, binds to the native promoter of the CYP3A4 gene to induce its expression. RNA interference experiments confirmed SXR involvement in CYP3A4 overexpression and permitted us to identify CYP3A5 and MRP2 transporter as SXR target genes. As a consequence, cells overexpressing SXR were found to be less sensitive to irinotecan treatment. Conclusions Altogether, these results suggest that the SXR pathway is involved in colon cancer irinotecan resistance in colon cancer cell line via the upregulation of select detoxification genes.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Reference55 articles.

1. Kruh GD: Introduction to resistance to anticancer agents. Oncogene. 2003, 22: 7262-7264. England 10.1038/sj.onc.1206932

2. Gottesman MM, Fojo T, Bates SE: Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002, 2: 48-58. 10.1038/nrc706

3. Xu C, Li CY, Kong AN: Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005, 28: 249-268. 10.1007/BF02977789

4. Plant N: The human cytochrome P450 sub-family: transcriptional regulation, inter-individual variation and interaction networks. Biochim Biophys Acta. 2007, 1770: 478-488. Netherlands

5. Scripture CD, Sparreboom A, Figg WD: Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol. 2005, 6: 780-789. England, 10.1016/S1470-2045(05)70388-0

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3