Discovery of gene expression-based pharmacodynamic biomarker for a p53 context-specific anti-tumor drug Wee1 inhibitor

Author:

Mizuarai Shinji,Yamanaka Kazunori,Itadani Hiraku,Arai Tsuyoshi,Nishibata Toshihide,Hirai Hiroshi,Kotani Hidehito

Abstract

Abstract Background Wee1 is a tyrosine kinase regulating S-G2 cell cycle transition through the inactivating phosphorylation of CDC2. The inhibition of Wee1 kinase by a selective small molecule inhibitor significantly enhances the anti-tumor efficacy of DNA damaging agents, specifically in p53 negative tumors by abrogating S-G2 checkpoints, while normal cells with wild-type p53 are not severely damaged due to the intact function of the G1 checkpoint mediated by p53. Since the measurement of mRNA expression requires a very small amount of biopsy tissue and is highly quantitative, the development of a pharmacodynamic (PD) biomarker leveraging mRNA expression is eagerly anticipated in order to estimate target engagement of anti-cancer agents. Results In order to find the Wee1 inhibition signature, mRNA expression profiling was first performed in both p53 positive and negative cancer cell lines treated with gemcitabine and a Wee1 inhibitor, MK-1775. We next carried out mRNA expression profiling of skin samples derived from xenograft models treated with the Wee1 inhibitor to identify a Wee1 inhibitor-regulatory gene set. Then, the genes that were commonly modulated in both cancer cell lines and rat skin samples were extracted as a Wee1 inhibition signature that could potentially be used as a PD biomarker independent of p53 status. The expression of the Wee1 inhibition signature was found to be regulated in a dose-dependent manner by the Wee1 inhibitor, and was significantly correlated with the inhibition level of a direct substrate, phosphorylated-CDC2. Individual genes in this Wee1 inhibition signature are known to regulate S-G2 cell cycle progression or checkpoints, which is consistent with the mode-of-action of the Wee1 inhibitor. Conclusion We report here the identification of an mRNA gene signature that was specifically changed by gemcitabine and Wee1 inhibitor combination treatment by molecular profiling. Given the common regulation of expression in both xenograft tumors and animal skin samples, the data suggest that the Wee1 inhibition gene signature might be utilized as a quantitative PD biomarker in both tumors and surrogate tissues, such as skin and hair follicles, in human clinical trials.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3