Author:
Zhang Tian-Ping,Chen Shuang-Shuang,Zhang Gen-You,Shi Si-Jiu,Wei Li,Li Hong-Miao
Abstract
Abstract
Objective
This study aimed to evaluate the association of single nucleotide polymorphisms (SNPs) of vitamin D metabolic pathway genes with susceptibility to pulmonary tuberculosis (PTB).
Methods
Nine hundred seventy-nine patients (490 PTB cases and 489 healthy controls) were included in this study. Seventeen SNPs of vitamin D metabolic pathway genes, including CYP24A1, CYP27A1, CYP27B1, CYP2R1, GC, and DHCR7, were genotyped with improved multiple ligase detection reaction (iMLDR).
Results
The GC rs3733359 GA, rs16847024 CT genotypes were significantly associated with the reduced risk of PTB, and the rs3733359 A, rs16847024 T alleles were also associated with the decreased PTB susceptibility. The GT genotype of GC rs4588 variant was significantly higher in patients with PTB when compared to controls. Moreover, the increased risk of rs3733359 and rs16847024 variants, and a decreased risk of rs4588, were found under the dominant mode among the PTB patients. However, there was no significant relationship of CYP24A1, CYP27A1, CYP27B1, CYP2R1, and DHCR7 polymorphisms with the risk of PTB. In CYP27A1, the rs17470271 T and rs933994 T alleles were significantly associated with leukopenia, drug resistance in the PTB patients, respectively. In GC gene, the rs7041 and rs3733359 variants were found to be associated with pulmonary infection, fever in the PTB patients, respectively. The increased frequency of rs16847024 TT genotype was found in the PTB patients with fever and drug-induced liver damage. DHCR7 rs12785878 TT genotype, and T allele frequencies were both significantly associated with pulmonary infection in the PTB patients. The haplotype analysis showed that CYP24A1 TACT, CYP2R1 GGCT, GGAT, GC AATG haplotypes were related to PTB susceptibility.
Conclusion
Our study suggested that GC SNPs were associated with the genetic background of PTB. CYP27A1, GC, and DHCR7 genetic variations might contribute to several clinical phenotypes of PTB in Chinese.
Funder
National Natural Science Foundation of China
Anhui Provincial Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Genetics,Endocrinology, Diabetes and Metabolism