Sex-specific modification of progesterone receptor expression by 17β-oestradiol in human cardiac tissues

Author:

Kararigas Georgios,Becher Eva,Mahmoodzadeh Shokoufeh,Knosalla Christoph,Hetzer Roland,Regitz-Zagrosek Vera

Abstract

Abstract Background Although circulating levels of sexual hormones in elderly men and women are low and quite similar, the adaptation of the elderly heart to stress differs between the sexes. We have hypothesized that the effects of sexual hormones in the heart may differ in men and women. Here, we assessed whether 17β-oestradiol regulates gene expression in the human heart in a sex-dependent manner. We selected the progesterone receptor as a well studied 17β-oestradiol target that may be pathologically linked to cardiac remodelling. Methods In order to assess the ex vivo effects of 17β-oestradiol in intact human cardiac tissues, we developed a 24-h model for the culture of human atrial myocardium. We verified tissue viability after 24 h in culture with two standard assays to determine the degree of apoptosis and metabolic activity of cardiac tissues. Progesterone receptor mRNA and protein level were measured after 24-h treatment of tissues with 17β-oestradiol. Statistical analysis was performed by the Mann-Whitney U test and two-way ANOVA. Results We established a tissue culture model that allows for the study of viable human cardiac tissue over a 24-h period. After 24 h, cultured cardiac tissues revealed low apoptosis, retained their metabolic activity and, therefore, remained viable. Treatment with 17β-oestradiol led to an induction of the progesterone receptor mRNA level in female (P = 0.001) but not in male tissues. Similarly, there was an increase in the level of progesterone receptor protein in female tissues (P = 0.03), while a decreasing trend was observed in male tissues (P = 0.079) exposed to 17β-oestradiol. Conclusions Our novel finding may offer a molecular explanation for the sex-specific differences observed in cardiac remodelling. The culture model we established for human cardiac tissue will facilitate the study of cellular processes in health and disease and will be of use for pharmacological testing.

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology,Gender Studies

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sex-Related Effects of Gut Microbiota in Metabolic Syndrome-Related Diabetic Retinopathy;Microorganisms;2023-02-10

2. Sex-Dependent Mechanisms of Cell Death Modalities in Cardiovascular Disease;Canadian Journal of Cardiology;2022-12

3. Estrogen and Cardiovascular Health;Frontiers in Cardiovascular Medicine;2022-03-30

4. Sex-Related Effects on Cardiac Development and Disease;Journal of Cardiovascular Development and Disease;2022-03-19

5. Oestrogenic Regulation of Mitochondrial Dynamics;International Journal of Molecular Sciences;2022-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3