Use of DNA metabarcoding of bird pellets in understanding raptor diet on the Qinghai-Tibetan Plateau of China

Author:

Hacker Charlotte E.ORCID,Hoenig Brandon D.ORCID,Wu Liji,Cong Wei,Yu Jingjing,Dai Yunchuan,Li Ye,Li Jia,Xue Yadong,Zhang Yu,Ji Yunrui,Cao Hanning,Li Diqiang,Zhang Yuguang,Janecka Jan E.ORCID

Abstract

Abstract Background Diet analysis is essential to understanding the functional role of large bird species in food webs. Morphological analysis of regurgitated bird pellet contents is time intensive and may underestimate biodiversity. DNA metabarcoding has the ability to circumvent these issues, but has yet to be done. Methods We present a pilot study using DNA metabarcoding of MT-RNR1 and MT-CO1 markers to determine the species of origin and prey of 45 pellets collected in Qinghai and Gansu Provinces, China. Results We detected four raptor species [Eurasian Eagle Owl (Bubo bubo), Saker Falcon (Falco cherrug), Steppe Eagle (Aquila nipalensis), and Upland Buzzard (Buteo hemilasius)] and 11 unique prey species across 10 families and 4 classes. Mammals were the greatest detected prey class with Plateau Pika (Ochotona curzoniae) being the most frequent. Observed Shannon’s and Simpson’s diversity for Upland Buzzard were 1.089 and 0.479, respectively, while expected values were 1.312 ± 0.266 and 0.485 ± 0.086. For Eurasian Eagle Owl, observed values were 1.202 and 0.565, while expected values were 1.502 ± 0.340 and 0.580 ± 0.114. Interspecific dietary niche partitioning between the two species was not detected. Conclusions Our results demonstrate successful use of DNA metabarcoding for understanding diet via a novel noninvasive sample type to identify common and uncommon species. More work is needed to understand how raptor diets vary locally, and the mechanisms that enable exploitation of similar dietary resources. This approach has wide ranging applicability to other birds of prey, and demonstrates the power of using DNA metabarcoding to study species noninvasively.

Funder

National Key Technology R&D Program of China

Snow Leopard Conservancy

Cleveland Metroparks Zoo

Panthera

Welfare Project of the National Scientific Research Institution

Publisher

Elsevier BV

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3