Abstract
Abstract
Background
Habitat loss, fragmentation and decrease of habitat quality caused by urbanization have led to a dramatic decline in biodiversity worldwide. For highly urbanized areas, parks have become “islands” or habitat fragments for wildlife. As an important indicator group of urban ecosystem health, the response of birds to urbanization has attracted the global attention of ecologists. Understanding the key factors affecting bird diversity in urbanized environment is crucial to the protection of biodiversity in urban ecosystems.
Methods
We used the line-transect method to survey birds in 37 urban parks in Nanjing, China. We also measured a number of park characteristics (area, isolation, shape index, environmental noise, distance to city center, and habitat diversity) that are commonly assumed to influence bird diversity. We then used the information-theoretic multi-model inference approach to determine which park characteristics had significant impacts on bird species richness.
Results
We found that park area, habitat diversity and the distance to city center were the best positive predictors of bird species richness in Nanjing urban parks. By contrast, park isolation, park shape and environmental noise had little or no influence on bird diversity.
Conclusions
Our study highlights the importance of park area, habitat diversity and the distance to city center in determining bird diversity in Nanjing city parks. Therefore, from a conservation viewpoint, we recommend that large parks with complex and diverse habitats far away from the city center should be retained or constructed to increase bird diversity in urban design and planning.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Reference56 articles.
1. Aronson MFJ, La Sorte FA, Nilon CH, Katti M, Goddard MA, Lepczyk CA. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B-Biol Sci. 2014;281:20133330.
2. Anderson DR, Link WA, Johnson DH, Burnham KP. Suggestions for presenting the results of data anlyses. J Wildl Manage. 2001;65:373–8.
3. Bartoń K. MuMIn: Multi-model inference. R package version 1.43.17. 2020. https://CRAN.R-project.org/package=MuMIn. Accessed 30 May 2020.
4. Beck T. Principles of ecological landscape design. Washington DC: Island Press; 2013.
5. Bibby C, Burgess N, Hill D, Mustoe S. Bird census techniques (2nd edition). London: Academic Press; 2000.
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献