Author:
Cortázar-Chinarro Maria,Meyer-Lucht Yvonne,Van der Valk Tom,Richter-Boix Alex,Laurila Anssi,Höglund Jacob
Abstract
Abstract
Background
While there is evidence of both purifying and balancing selection in immune defense genes, large-scale genetic diversity in antimicrobial peptides (AMPs), an important part of the innate immune system released from dermal glands in the skin, has remained uninvestigated. Here we describe genetic diversity at three AMP loci (Temporin, Brevinin and Palustrin) in two ranid frogs (Rana arvalis and R. temporaria) along a 2000 km latitudinal gradient. We amplified and sequenced part of the Acidic Propiece domain and the hypervariable Mature Peptide domain (~ 150-200 bp) in the three genes using Illumina Miseq and expected to find decreased AMP genetic variation towards the northern distribution limit of the species similarly to studies on MHC genetic patterns.
Results
We found multiple loci for each AMP and relatively high gene diversity, but no clear pattern of geographic genetic structure along the latitudinal gradient. We found evidence of trans-specific polymorphism in the two species, indicating a common evolutionary origin of the alleles. Temporin and Brevinin did not form monophyletic clades suggesting that they belong to the same gene family. By implementing codon evolution models we found evidence of strong positive selection acting on the Mature Peptide. We also found evidence of diversifying selection as indicated by divergent allele frequencies among populations and high Theta k values.
Conclusion
Our results suggest that AMPs are an important source of adaptive diversity, minimizing the chance of microorganisms developing resistance to individual peptides.
Funder
Vetenskapsrådet
Svenska Forskningsrådet Formas
Stiftelsen Oscar och Lili Lamms Minne
Stiftelsen Zoologisk Forskning
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference100 articles.
1. Wood PJ. Understanding immunology. Pearson Education. 2006.
2. Janeway CA, Travers P, Walport M, Shlomchik M. Immunobiology: the immune system in health and disease, vol. 2. New York: Garland Pub; 2001.
3. Corsaro C, Scalia M, Leotta N, Mondio F, Sichel G. Characterisation of Kupffer cells in some Amphibia. J Anat. 2000;196(2):249–61. https://doi.org/10.1046/j.1469-7580.2000.19620249.x.
4. Horton J, Horton T, Dzialo R, Gravawr I, Minter R, Ritchie P, Ganluna L, Watson M, Caopet M. T-cell and natural killer cell development in thymectomized Xenopus. Immunol Rev. 1998;166(1):245–58. https://doi.org/10.1111/j.1600-065X.1998.tb01267.x.
5. Apponyi MA, Pukala TL, Brinkworth CS, Maselli VM, Bowie JH, Tyler MJ, Booker GW, Wallace JC, Carver JA, Separovic F, et al. Host-defence peptides of Australian anurans: structure, mechanism of action and evolutionary significance. Peptides. 2004;25(6):1035–54. https://doi.org/10.1016/j.peptides.2004.03.006.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献