Abstract
Abstract
Background
Several studies have demonstrated the antitumor activity of rosiglitazone (RGZ) in cancer cells, including breast cancer cells. However, the molecular targets of RGZ in the inhibition of angiogenesis in breast cancer cells remain unclear. This study aimed to explore the potential targets of RGZ in inhibiting breast cancer angiogenesis using bioinformatics-based analysis.
Results
Venn diagram analysis revealed 29 TR proteins. KEGG pathway enrichment analysis demonstrated that TR regulated the adipocytokine, AMPK, and PPAR signaling pathways. Oncoprint analysis showed genetic alterations in FABP4 (14%), ADIPOQ (2.9%), PPARG (2.8%), PPARGC1A (1.5%), CD36 (1.7%), and CREBBP (11%) in patients with breast cancer in a TCGA study. The mRNA levels of FABP4, ADIPOQ, PPARG, CD36, and PPARGC1A were significantly lower in patients with breast cancer than in those without breast cancer. Analysis of gene expression using bc-GenExMiner showed that the mRNA levels of FABP, ADIPOQ, PPARG, CD36, PPARGC1A, and CREBBP were significantly lower in basal-like and triple-negative breast cancer (TNBC) cells than in non-basal-like and non-TNBC cells. In general, the protein levels of these genes were low, except for that of CREBBP. Patients with breast cancer who had low mRNA levels of FABP4, ADIPOQ, PPARG, and PPARGC1A had lower overall survival rates than those with high mRNA levels, which was supported by the overall survival related to DNA methylation. Correlation analysis of immune cell infiltration with TR showed a correlation between TR and immune cell infiltration, highlighting the potential of RGZ for immunotherapy.
Conclusion
This study explored the potential targets of RGZ as antiangiogenic agents in breast cancer therapy and highlighted FABP4, ADIPOQ, PPARG, PPARGC1A, CD36, and CREBBP as potential targets of RGZ. These findings require further validation to explore the potential of RGZ as an antiangiogenic agent.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Genetics
Reference122 articles.
1. Rajabi M, Mousa SA. The role of angiogenesis in Cancer treatment. Biomedicines. 2017;5(2):34.
2. Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, et al. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol. 2015;35(Suppl):S224-43.
3. Zuazo-Gaztelu I, Casanovas O. Unraveling the role of angiogenesis in Cancer ecosystems. Front Oncol. 2018;8(248).
4. Comunanza V, Bussolino F. Therapy for Cancer: strategy of combining anti-Angiogenic and target therapies. Front Cell Dev Biol. 2017;5:101.
5. Abdollahi A, Lipson KE, Sckell A, Zieher H, Klenke F, Poerschke D, et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res. 2003;63(24):8890–8.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献