Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages

Author:

Li Qian,Liang Ruobing,Li Yan,Gao Yanxia,Li Qiufeng,Sun DongxiaoORCID,Li Jianguo

Abstract

Abstract Background RNA-sequencing was performed to explore the bovine liver transcriptomes of Holstein cows to detect potential functional genes related to lactation and milk composition traits in dairy cattle. The bovine transcriptomes of the nine liver samples from three Holstein cows during dry period (50-d prepartum), early lactation (10-d postpartum), and peak of lactation (60-d postpartum) were sequenced using the Illumina HiSeq 2500 platform. Results A total of 204, 147 and 81 differentially expressed genes (DEGs, p < 0.05, false discovery rate q < 0.05) were detected in early lactation vs. dry period, peak of lactation vs. dry period, and peak of lactation vs. early lactation comparison groups, respectively. Gene ontology and KEGG pathway analysis showed that these DEGs were significantly enriched in specific biological processes related to metabolic and biosynthetic and signaling pathways of PPAR, AMPK and p53 (p < 0.05). Ten genes were identified as promising candidates affecting milk yield, milk protein and fat traits in dairy cattle by using an integrated analysis of differential gene expression, previously reported quantitative trait loci (QTL), data from genome-wide association studies (GWAS), and biological function information. These genes were APOC2, PPP1R3B, PKLR, ODC1, DUSP1, LMNA, GALE, ANGPTL4, LPIN1 and CDKN1A. Conclusion This study explored the complexity of the liver transcriptome across three lactation periods in dairy cattle by performing RNA sequencing. Integrated analysis of DEGs and reported QTL and GWAS data allowed us to find ten key candidate genes influencing milk production traits.

Funder

China Modern Agro-industry Technology Research System

Research Program of Hebei Province

Hebei Dairy Cattle Innovation Team of Modern Agro-industry Technology Research System

National Natural Science Foundation of China

Program for Changjiang Scholar and Innovation Research Team in University

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3