Abstract
Abstract
Background
Drought during reproductive stage is among the main abiotic stresses responsible for drastic reduction of grain yield in rainfed rice. The genetic mechanism of reproductive stage drought tolerance is very complex. Many physiological and morphological traits are associated with this stress tolerance. Robust molecular markers are required for detection and incorporation of these correlated physiological traits into different superior genetic backgrounds. Identification of gene(s)/QTLs controlling reproductive stage drought tolerance and its deployment in rainfed rice improvement programs are very important.
Results
QTLs linked to physiological traits under reproductive stage drought tolerance were detected by using 190 F7 recombinant inbred lines (RIL) mapping population of CR 143–2-2 and Krishnahamsa. Wide variations were observed in the estimates of ten physiological traits studied under the drought stress. The RIL population was genotyped using the bulk- segregant analysis (BSA) approach. A total of 77 SSR polymorphic markers were obtained from the parental polymorphisms survey of 401 tested primers. QTL analysis using inclusive composite interval mapping detected a total of three QTLs for the physiological traits namely relative chlorophyll content (qRCC1.1), chlorophyll a (qCHLa1.1), and proline content (qPRO3.1) in the studied RIL population. The QTL, qPRO3.1 is found to be a novel one showing LOD value of 13.93 and phenotypic variance (PVE) of 78.19%. The QTL was located within the marker interval of RM22-RM517 on chromosome 3. Another novel QTL, qRCC1.1 was mapped on chromosome 1 at a distance of 142.8 cM and found to control relative chlorophyll content during terminal drought stress. A third novel QTL was detected in the population that controlled chlorophyll a content (qCHLa1.1) under the terminal stress period. The QTL was located on chromosome 1 at a distance of 81.8 cM and showed 64.5% phenotypic variation.
Conclusions
The three novel QTLs, qRCC1.1, qCHLa1.1 and qPRO3.1 controlling relative chlorophyll content, chlorophyll a and proline content, respectively were identified in the mapping population derived from CR 143–2-2 and Krishnahamsa. These 3 QTLs will be useful for enhancement of terminal drought stress tolerance through marker-assisted breeding approach in rice.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献