α-Gal antigen-deficient rabbits with GGTA1 gene disruption via CRISPR/Cas9

Author:

Wei Lina,Mu Yufeng,Deng Jichao,Wu Yong,Qiao Ying,Zhang Kun,Wang Xuewen,Huang Wenpeng,Shao Anliang,Chen Liang,Zhang Yang,Li Zhanjun,Lai Liangxue,Qu Shuxin,Xu Liming

Abstract

Abstract Background Previous studies have identified the carbohydrate epitope Galα1–3Galβ1–4GlcNAc-R (termed the α-galactosyl epitope), known as the α-Gal antigen as the primary xenoantigen recognized by the human immune system. The α-Gal antigen is regulated by galactosyltransferase (GGTA1), and α-Gal antigen-deficient mice have been widely used in xenoimmunological studies, as well as for the immunogenic risk evaluation of animal-derived medical devices. The objective of this study was to develop α-Gal antigen-deficient rabbits by GGTA1 gene editing with the CRISPR/Cas9 system. Results The mutation efficiency of GGTA1 gene-editing in rabbits was as high as 92.3% in F0 pups. Phenotype analysis showed that the α-Gal antigen expression in the major organs of F0 rabbits was decreased by more than 99.96% compared with that in wild-type (WT) rabbits, and the specific anti-Gal IgG and IgM antibody levels in F1 rabbits increased with increasing age, peaking at approximately 5 or 6 months. Further study showed that GGTA1 gene expression in F2-edited rabbits was dramatically reduced compared to that in WT rabbits. Conclusions α-Gal antigen-deficient rabbits were successfully generated by GGTA1 gene editing via the CRISPR/Cas9 system in this study. The feasibility of using these α-Gal antigen-deficient rabbits for the in situ implantation and residual immunogenic risk evaluation of animal tissue-derived medical devices was also preliminarily confirmed.

Funder

National Key Research and Development Program of China

Youth Development Research Foundation of NIFDC

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3