An improved and extended dual-index multiplexed 16S rRNA sequencing for the Illumina HiSeq and MiSeq platform

Author:

Larin A.K.,Klimina K.M.,Veselovsky V.A.,Olekhnovich E.I.,Morozov M.D.,Boldyreva D.I.,Yunes R.A.,Manolov A.I.,Fedorov D.E.,Pavlenko A.V.,Galeeva Y.S.,Starikova E.V.,Ilina E.N.

Abstract

Abstract Background Recent advancements in next-generation sequencing (NGS) technology have ushered in significant improvements in sequencing speed and data throughput, thereby enabling the simultaneous analysis of a greater number of samples within a single sequencing run. This technology has proven particularly valuable in the context of microbial community profiling, offering a powerful tool for characterizing the microbial composition at the species level within a given sample. This profiling process typically involves the sequencing of 16S ribosomal RNA (rRNA) gene fragments. By scaling up the analysis to accommodate a substantial number of samples, sometimes as many as 2,000, it becomes possible to achieve cost-efficiency and minimize the introduction of potential batch effects. Our study was designed with the primary objective of devising an approach capable of facilitating the comprehensive analysis of 1,711 samples sourced from diverse origins, including oropharyngeal swabs, mouth cavity swabs, dental swabs, and human fecal samples. This analysis was based on data obtained from 16S rRNA metagenomic sequencing conducted on the Illumina MiSeq and HiSeq sequencing platforms. Results We have designed a custom set of 10-base pair indices specifically tailored for the preparation of libraries from amplicons derived from the V3-V4 region of the 16S rRNA gene. These indices are instrumental in the analysis of the microbial composition in clinical samples through sequencing on the Illumina MiSeq and HiSeq platforms. The utilization of our custom index set enables the consolidation of a significant number of libraries, enabling the efficient sequencing of these libraries in a single run. Conclusions The unique array of 10-base pair indices that we have developed, in conjunction with our sequencing methodology, will prove highly valuable to laboratories engaged in sequencing on Illumina platforms or utilizing Illumina-compatible kits.

Funder

Russian Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3