Comparative transcriptomic analysis of reproductive characteristics of reciprocal hybrid lineages derived from hybridization between Megalobrama amblycephala and Culter alburnus

Author:

Ding Xue,Zhang Yifei,Li Die,Xu Jia,Wu Chang,Cui Xiaojuan,Sun Yuandong

Abstract

Abstract Background Distant hybridization is an important breeding technique for creating new strains with superior traits by integrating two different genomes. Successful hybridization of Megalobrama amblycephala (Blunt snout bream, BSB, 2n = 48) and Culter alburnus (Topmouth culter, TC, 2n = 48) was achieved to establish hybrid lineages (BT and TB), which provide valuable materials for exploring the mechanisms of distant hybridization fertility. In this study, the gonadal tissue transcriptomes of BSB, TC, BT-F1, and TB-F1 were sequenced using Illumina high-throughput sequencing technology to analyze the reproductive characteristics of BT and TB. Results Differential gene expression analysis showed that the differentially expressed genes in BT vs BSB and BT vs TC were mainly enriched in signaling pathways not directly associated with meiosis. While, the differentially expressed genes of TB vs BSB and TB vs TC were mainly enriched in pathways related to meiosis, and most of them were down-regulated, indicating that meiosis is suppressed in TB. Under-dominance (UD) genes were enriched in pathways related to meiosis and DNA repair in TB. Over-dominance (OD) genes were enriched in MAPK signaling pathway, expression level dominance-BSB (ELD-B) genes were enriched in pathways related to steroid hormone synthesis and expression level dominance-TC (ELD-T) genes were not significantly enriched in any pathway in both BT and TB. Conclusions These results suggest that meiotic progression may not be affected in BT, whereas it is clearly inhibited in TB. Offspring of M. amblycephala maternal parent may have better genomic compatibility and fertility. Our study provides important information on the molecular mechanisms of breaking reproductive isolation in distantly hybridized fertile lineages.

Funder

National Natural Science Foundation of China

State Key Laboratory of Freshwater Fish Developmental Biology, Hunan Normal University

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3