Thorough statistical analyses of breast cancer co-methylation patterns

Author:

Sun Shuying,Dammann Jael,Lai Pierce,Tian Christine

Abstract

Abstract Background Breast cancer is one of the most commonly diagnosed cancers. It is associated with DNA methylation, an epigenetic event with a methyl group added to a cytosine paired with a guanine, i.e., a CG site. The methylation levels of different genes in a genome are correlated in certain ways that affect gene functions. This correlation pattern is known as co-methylation. It is still not clear how different genes co-methylate in the whole genome of breast cancer samples. Previous studies are conducted using relatively small datasets (Illumina 27K data). In this study, we analyze much larger datasets (Illumina 450K data). Results Our key findings are summarized below. First, normal samples have more highly correlated, or co-methylated, CG pairs than tumor samples. Both tumor and normal samples have more than 93% positive co-methylation, but normal samples have significantly more negatively correlated CG sites than tumor samples (6.6% vs. 2.8%). Second, both tumor and normal samples have about 94% of co-methylated CG pairs on different chromosomes, but normal samples have 470 million more CG pairs. Highly co-methylated pairs on the same chromosome tend to be close to each other. Third, a small proportion of CG sites’ co-methylation patterns change dramatically from normal to tumor. The percentage of differentially methylated (DM) sites among them is larger than the overall DM rate. Fourth, certain CG sites are highly correlated with many CG sites. The top 100 of such super-connector CG sites in tumor and normal samples have no overlaps. Fifth, both highly changing sites and super-connector sites’ locations are significantly different from the genome-wide CG sites’ locations. Sixth, chromosome X co-methylation patterns are very different from other chromosomes. Finally, the network analyses of genes associated with several sets of co-methylated CG sites identified above show that tumor and normal samples have different patterns. Conclusions Our findings will provide researchers with a new understanding of co-methylation patterns in breast cancer. Our ability to thoroughly analyze co-methylation of large datasets will allow researchers to study relationships and associations between different genes in breast cancer.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3