Biomechanical analysis of different levels of constraint in TKA during daily activities

Author:

Castellarin Gianluca,Bori EdoardoORCID,Rapallo Laurence,Pianigiani Silvia,Innocenti Bernardo

Abstract

Abstract Background Numerous total knee prosthetic implants are currently available on the orthopedic market, and this variety covers a set of different levels of constraint: among the various models available, a significant role is covered by mobile bearing cruciate-retaining design with an ultra-congruent insert, mobile bearing cruciate-retaining design, fixed-bearing posterior stabilized prosthesis and fixed-bearing constrained condylar knee. A biomechanical comparative study among them could therefore be helpful for the clinical decision-making process. This study aimed to compare the effect of these different levels of constraint in the knee biomechanics of a patient, in three different configurations representing the typical boundary conditions experienced by the knee joint during daily activities. Method The investigation was performed via finite element analysis with a knee model based on an already published and validated one. Four different types of prosthesis designs were analyzed: two mobile-bearing models and two fixed-bearing models, each one having a different level of constraint. The different designs were incorporated in to the 3D finite element model of the lower leg and analyzed in three different configurations reproducing the landing and the taking-off phases occurring during the gait cycle and chair-rising. Implant kinetics (in terms of polyethylene contact areas and contact pressure), polyethylene and tibial bone stresses were calculated under three different loading conditions for each design. Results The tibial stress distribution in the different regions of interest of the tibia remains relatively homogeneous regardless of the type of design used. The main relevant difference was observed between the mobile and fixed-bearing models, as the contact areas were significantly different between these models in the different loading conditions. As a consequence, significant changes in the stress distribution were observed at the interface between the prosthetic components, but no significant changes were noted on the tibial bone. Moreover, the different models exhibited a symmetrical medial and lateral distribution of the contact areas, which was not always common among all the currently available prostheses (i.e. medial pivot designs). Conclusion The changes of the prosthetic implant did not induce a big variation of the stress distribution in the different regions of the tibial bone, while they significantly changed the distribution of stress at the interface between the prosthetic components.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3