Abstract
Abstract
Background
Numerous total knee prosthetic implants are currently available on the orthopedic market, and this variety covers a set of different levels of constraint: among the various models available, a significant role is covered by mobile bearing cruciate-retaining design with an ultra-congruent insert, mobile bearing cruciate-retaining design, fixed-bearing posterior stabilized prosthesis and fixed-bearing constrained condylar knee. A biomechanical comparative study among them could therefore be helpful for the clinical decision-making process. This study aimed to compare the effect of these different levels of constraint in the knee biomechanics of a patient, in three different configurations representing the typical boundary conditions experienced by the knee joint during daily activities.
Method
The investigation was performed via finite element analysis with a knee model based on an already published and validated one. Four different types of prosthesis designs were analyzed: two mobile-bearing models and two fixed-bearing models, each one having a different level of constraint. The different designs were incorporated in to the 3D finite element model of the lower leg and analyzed in three different configurations reproducing the landing and the taking-off phases occurring during the gait cycle and chair-rising. Implant kinetics (in terms of polyethylene contact areas and contact pressure), polyethylene and tibial bone stresses were calculated under three different loading conditions for each design.
Results
The tibial stress distribution in the different regions of interest of the tibia remains relatively homogeneous regardless of the type of design used. The main relevant difference was observed between the mobile and fixed-bearing models, as the contact areas were significantly different between these models in the different loading conditions. As a consequence, significant changes in the stress distribution were observed at the interface between the prosthetic components, but no significant changes were noted on the tibial bone. Moreover, the different models exhibited a symmetrical medial and lateral distribution of the contact areas, which was not always common among all the currently available prostheses (i.e. medial pivot designs).
Conclusion
The changes of the prosthetic implant did not induce a big variation of the stress distribution in the different regions of the tibial bone, while they significantly changed the distribution of stress at the interface between the prosthetic components.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Reference50 articles.
1. Blevins JL, Cross MB. “Prosthetic Kinematics: Cruciate Retaining Versus Posterior Stabilized Versus Medial Pivot,” in Total Knee Arthroplasty, Springer International Publishing; 2015. p. 137–43. https://doi.org/10.1007/978-3-319-17554-6_12.
2. Mazzucchelli L, et al. Cruciate retaining and cruciate substituting ultra-congruent insert. Ann Transl Med. 2016;4(1). https://doi.org/10.3978/j.issn.2305-5839.2015.12.52.
3. Peters CL, Mulkey P, Erickson J, Anderson MB, Pelt CE. Comparison of total knee arthroplasty with highly congruent anterior-stabilized bearings versus a cruciate-retaining design knee. Clin Orthop Relat Res. 2014;472(1):175–80. https://doi.org/10.1007/s11999-013-3068-6.
4. Kolisek Frank R, et al. Posterior-stabilized versus posterior cruciate ligament-retaining total knee arthroplasty. Iowa Orthop J. 2009;29:23–7 [Online]. Available: https://www.researchgate.net/publication/26800406.
5. Song SJ, Park CH, Bae DK. What to know for selecting cruciate-retaining or posterior-stabilized total knee arthroplasty. Clin Orthop Surg. 2019;11(2):142–50. https://doi.org/10.4055/cios.2019.11.2.142.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献