Abstract
Abstract
Background
To ensure the success of total knee arthroplasty (TKA), precise bone cuts and a well-balanced soft tissue envelope are crucial. Soft tissue release may be necessary, subject to various factors. Therefore, documenting the type, frequency, and necessity of soft tissue releases can establish a benchmark for comparing different alignment techniques and philosophies and evaluating their outcomes. The purpose of this study was to demonstrate that robotic-assisted knee surgery requires minimal soft tissue release.
Methods
We prospectively documented and retrospectively reviewed the soft tissue releases employed in securing ligament balance in the first 175 patients who received robotic-assisted TKAs at Nepean Hospital. ROSA was utilized in all surgeries with the aim of restoring mechanical coronal alignment, with a flexion gap balancing technique. Surgeries were performed between December 2019 to August 2021 by a single surgeon who used a standard medial parapatellar approach without a tourniquet, and the cementless persona prosthesis. All patients were followed up for a minimum of 6 months post-surgery. Soft tissue releases included any form of medial release for varus knee, posterolateral release for valgus knee and PCL fenestration or sacrifice.
Results
There were 131 female and 44 male patients, aged between 48 to 89 years (average 60 years). The preoperative HKA ranged from 22 degrees varus to 28 degrees valgus, with 71% of patients presenting with a varus deformity. For the whole group, the no need for soft tissue release was documented in 123 patients (70.3%), small fenestrated releases of PCL in 27 (15.4%), sacrifice of PCL in 8 (4.5%), medial releases in 4 (2.3%) and posterolateral releases in 13 (7.4%). In 29.7% of patients in whom a soft tissue release was necessary for balance, over half were/received minor fenestrations of the PCL. Outcomes to date included no revisions or impending revisions, 2 MUAs (1%), and Oxford knee scores averaged 40 at 6 months.
Conclusion
We concluded that Robot technology enhanced the precision of bone cuts and allowed for titration of required soft tissue releases to achieve optimal balance.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Reference18 articles.
1. Plaskos C, Wakelin E, Shalhoub S, Lawrence J, Keggi J, Koenig JA, et al. Soft-tissue release rates in robotic-assisted gap-balancing and measured-resection total knee arthroplasty. Orthopaed Proc. 2020;102-B((SUPP_2)):1.
2. Ranawat AS, Ranawat CS, Elkus M, Rasquinha VJ, Rossi R, Babhulkar S. Total knee arthroplasty for severe valgus deformity. J Bone Joint Surg Am. 2005;87 Suppl 1(Pt 2):271–84.
3. MacDessi SJ, Griffiths-Jones W, Harris IA, Bellemans J, Chen DB. Coronal Plane Alignment of the Knee (CPAK) classification. Bone Joint J. 2021;103-B(2):329–37.
4. Clark G, Steer R, Tippett B, Wood D. Short-term benefits of robotic assisted total knee arthroplasty over computer navigated total knee arthroplasty are not sustained with no difference in postoperative patient-reported outcome measures. Arthroplasty Today. 2022;14:210-5 e0.
5. Morcos MW, Lanting BA, Webster J, Howard JL, Bryant D, Teeter MG. Effect of medial soft tissue releases during posterior-stabilized total knee arthroplasty on contact kinematics and patient-reported outcomes. J Arthroplasty. 2019;34(6):1110–5.