Long noncoding RNA DLGAP1-AS2 promotes tumorigenesis and metastasis by regulating the Trim21/ELOA/LHPP axis in colorectal cancer

Author:

Wang Xue,Cheng Han,Zhao Jing,Li Jiuming,Chen Ying,Cui Kaisa,Tian Lu,Zhang Jia,Li Chaoqun,Sun Shengbai,Feng Yuyang,Yao Surui,Bian Zehua,Huang Shenglin,Fei Bojian,Huang Zhaohui

Abstract

Abstract Background Long noncoding RNAs (lncRNAs) have driven research focused on their effects as oncogenes or tumor suppressors involved in carcinogenesis. However, the functions and mechanisms of most lncRNAs in colorectal cancer (CRC) remain unclear. Methods The expression of DLGAP1-AS2 was assessed by quantitative RT-PCR in multiple CRC cohorts. The impacts of DLGAP1-AS2 on CRC growth and metastasis were evaluated by a series of in vitro and in vivo assays. Furthermore, the underlying mechanism of DLGAP1-AS2 in CRC was revealed by RNA pull down, RNA immunoprecipitation, RNA sequencing, luciferase assays, chromatin immunoprecipitation, and rescue experiments. Results We discovered that DLGAP1-AS2 promoted CRC tumorigenesis and metastasis by physically interacting with Elongin A (ELOA) and inhibiting its protein stability by promoting tripartite motif containing 21 (Trim21)-mediated ubiquitination modification and degradation of ELOA. In particular, we revealed that DLGAP1-AS2 decreases phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) expression by inhibiting ELOA-mediated transcriptional activating of LHPP and thus blocking LHPP-dependent suppression of the AKT signaling pathway. In addition, we also demonstrated that DLGAP1-AS2 was bound and stabilized by cleavage and polyadenylation specificity factor (CPSF2) and cleavage stimulation factor (CSTF3). Conclusions The discovery of DLGAP1-AS2, a promising prognostic biomarker, reveals a new dimension into the molecular pathogenesis of CRC and provides a prospective treatment target for this disease.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3