Long non-coding RNA SOX2OT promotes the stemness phenotype of bladder cancer cells by modulating SOX2

Author:

Zhan YonghaoORCID,Chen Zhicong,He Shiming,Gong Yanqing,He Anbang,Li Yifan,Zhang Lianghao,Zhang Xuepei,Fang Dong,Li Xuesong,Zhou Liqun

Abstract

Abstract Background Accumulating evidence indicates that long non-coding RNAs (lncRNAs) are potential biomarkers and key regulators of tumour development and progression. SOX2 overlapping transcript (SOX2OT) is a novel lncRNA that acts as a potential biomarker and is involved in the development of cancer and cancer stem cells. However, the clinical significance and molecular mechanism of SOX2OT in bladder cancer are still unknown. Methods The expression level of SOX2OT was determined by RT-qPCR in a total of 106 patients with urothelial bladder cancer and in different bladder cancer cell (BCC) lines. Bladder cancer stem cells (BCSCs) were isolated from BCCs using flow cytometry based on the stem cell markers CD44 and ALDH1. Loss-of-function experiments were performed to investigate the biological roles of SOX2OT in the stemness phenotype of BCSCs. Comprehensive transcriptional analysis, RNA FISH, dual-luciferase reporter assays and western blots were performed to explore the molecular mechanisms underlying the functions of SOX2OT. Results SOX2OT was highly expressed in bladder cancer, and increased SOX2OT expression was positively correlated with a high histological grade, advanced TNM stage and poor prognosis. Further experiments demonstrated that knockdown of SOX2OT inhibited the stemness phenotype of BCSCs. Moreover, inhibition of SOX2OT delayed xenograft tumour growth and decreased metastases in vivo. Mechanistically, we found that SOX2OT was mainly distributed in the cytoplasm and positively regulated SOX2 expression by sponging miR-200c. Furthermore, SOX2 overexpression reversed the SOX2OT silencing-induced inhibition of the BCSC stemness phenotype. Conclusion This study is the first to demonstrate that SOX2OT plays an important regulatory role in BCSCs and that SOX2OT may serve as a potential diagnostic biomarker and therapeutic target in bladder cancer.

Funder

The National Natural Science Foundation of China

the Fund for Fostering Young Scholars of Peking University Health Science Center

The Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3