Long noncoding RNA LCAT1 functions as a ceRNA to regulate RAC1 function by sponging miR-4715-5p in lung cancer

Author:

Yang Juze,Qiu Qiongzi,Qian Xinyi,Yi Jiani,Jiao Yiling,Yu Mengqian,Li Xufan,Li Jia,Mi Chunyi,Zhang Jisong,Lu Bingjian,Chen Enguo,Liu Pengyuan,Lu Yan

Abstract

Abstract Introduction Long noncoding RNAs (lncRNAs) are emerging as key players in the development and progression of cancer. However, the biological role and clinical significance of most lncRNAs in lung carcinogenesis remain unclear. In this study, we identified and explored the role of a novel lncRNA, lung cancer associated transcript 1 (LCAT1), in lung cancer. Methods We predicted and validated LCAT1 from RNA-sequencing (RNA-seq) data of lung cancer tissues. The LCAT1–miR-4715-5p–RAC1 axis was assessed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Signaling pathways altered by LCAT1 knockdown were identified using RNA-seq. Furthermore, the mechanism of LCAT1 was investigated using loss-of-function and gain-of-function assays in vivo and in vitro. Results LCAT1 is an oncogene that is significantly upregulated in lung cancer tissues and associated with poor prognosis. LCAT1 knockdown caused growth arrest and cell invasion in lung cancer cells in vitro, and inhibited tumorigenesis and metastasis in the mouse xenografts. Mechanistically, LCAT1 functions as a competing endogenous RNA for miR-4715-5p, thereby leading to the upregulation of the activity of its endogenous target, Rac family small GTPase 1 (RAC1). Moreover, EHop-016, a small molecule inhibitor of RAC1, as an adjuvant could improve the Taxol monotherapy against lung cancer cells in vitro. Conclusions LCAT1–miR-4715-5p–RAC1/PAK1 axis plays an important role in the progression of lung cancer. Our findings may provide valuable drug targets for treating lung cancer. The novel combination therapy of Taxol and EHop-016 for lung cancer warrants further investigation, especially in lung cancer patients with high LCAT1 expression.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3