Selective treatment pressure in colon cancer drives the molecular profile of resistant circulating tumor cell clones

Author:

Cayrefourcq Laure,Thomas Frédéric,Mazard Thibault,Assenat Eric,Assou Said,Alix-Panabières CatherineORCID

Abstract

AbstractThe characterization of circulating tumor cells (CTCs) holds promises for precision medicine because these cells are an important clinical indicator of treatment efficacy. We established the first and still only nine permanent colon CTC lines from peripheral blood samples of a patient with metastatic colon cancer collected at different time points during treatment and cancer progression. The study objectives were (i) to compare the gene expression profiles of these CTC lines, and (ii) to determine the main features acquired during treatment. The number of upregulated genes was higher in the CTC lines obtained after treatment, indicating that they acquired properties to escape treatment pressure. Among these upregulated genes, some are involved in the mTOR and PI3K/AKT signaling pathways. Moreover, cytidine deaminase expression was significantly increased in the CTC lines obtained after failure of the first- and second-line 5-fluorouracile-based treatments, suggesting that these CTCs can eliminate this specific drug and resist to therapy. Several enzymes involved in xenobiotic metabolism also were upregulated after treatment, suggesting the activation of detoxification mechanisms in response to chemotherapy. Finally, the significant higher expression of aldolase B in four of the six CTC lines obtained after treatment withdrawal and cancer progression indicated that these clones originated from liver metastases. In conclusion, these CTC lines generated at different time points during treatment of metastatic colon cancer in a single patient are characterized by the deregulation of different genes that promote (i) drug resistance, (ii) xenobiotic and energy metabolism, and (iii) stem cell properties and plasticity.

Funder

Institut National Du Cancer

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3