NCAPG promotes the oncogenesis and progression of non-small cell lung cancer cells through upregulating LGALS1 expression

Author:

Sun Huanhuan,Zhang Hong,Yan Yan,Li Yushi,Che Gang,Zhou Cuiling,Nicot Christophe,Ma Haiqing

Abstract

Abstract Background Numerous common oncogenic driver events have been confirmed in non-small cell lung cancer (NSCLC). Although targeted therapy has revolutionized NSCLC treatment, some patients still do not respond. NCAPG, also known as non-SMC condensin I complex subunit G, was positively associated with proliferation and migration in several tumor types. Methods We used transcriptional sequencing and TCGA database analysis to identify NCAPG as a new therapeutic target for NSCLC. The oncogenic roles of NCAPG in NSCLC tumor growth and metastasis were detected in vitro and in vivo. Ncapg+/+ or Ncapg+/− mice with urethane treatment were analyzed for oncogenesis of NSCLC. Results We investigated NCAPG as a new oncogenic driver which promoted NSCLC tumorigenesis and progression. We used transcriptome sequencing and the Cancer Genome Atlas (TCGA) database analysis to screen and found that NCAPG was negatively correlated with NSCLC survival. Using immunohistochemistry, we demonstrated that NCAPG overexpression was an independent risk factor for NSCLC survival. Functionally, NCAPG knockdown inhibited proliferation, migration, and invasion of NSCLC cells in vitro and in vivo. We exposed wildtype or Ncapg+/− mice to urethane and discovered that urethane-induced lung tumors were reduced in Ncapg+/− mice. Mechanistically, the function of NCAPG in promoting initiation and progression of NSCLC was closely related to LGALS1, which was also upregulated in NSCLC and might interact directly with NCAPG. Conclusions This study indicates that NCAPG is one of the essential factors for NSCLC oncogenesis and progression, providing a new target for prognosis prediction and treatment of NSCLC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3