Abstract
Abstract
Background
Exosomes have emerged as vital biomarkers of multiple cancers and contain abundant circular RNAs (circRNAs). However, the potential for exosomal circRNAs to be used in diagnostics and their molecular mechanism of action in colorectal cancer (CRC) remain unclear.
Methods
CRC-specific exosomal circRNAs were identified by RNA sequencing, exoRBase database and a tissue microarray. The diagnostic performance of plasma exosomal circRNAs was evaluated among cancer-free controls, precancer individuals, CRC patients, and patients with other types of cancer. The corresponding biological functions were mainly assessed using circRNA pull-down, proteomic analysis, and RNA immunoprecipitation assay underlying cellular and mouse models.
Results
CircLPAR1 was encapsulated in exosomes with high stability and detectability, and its expression in plasma exosomes was remarkably decreased during CRC development but recovered after surgery. Exosomal circLPAR1 showed cancer specificity in CRC diagnosis and increased the diagnostic performance to an area under the receiver operating characteristic curve of 0.875, as determined by analysing its performance in combination with common clinical biomarkers CEA and CA19–9. Additionally, circLPAR1 was downregulated in CRC tissues and was associated with overall survival. Mechanistically, exosomal circLPAR1 was internalized by CRC cells, and it suppressed tumor growth, likely because exosomal circLPAR1 directly bound with eIF3h specifically suppressed the METTL3-eIF3h interaction, decreasing the translation of oncogene BRD4.
Conclusions
This comprehensive study highlights plasma exosomal circLPAR1 as a promising predictor in CRC diagnosis and describes its biological regulation of colorectal tumorigenesis. This study provides a new perspective on early diagnosis in the clinic and pathogenesis in disease development.
Funder
National Natural Science Foundation of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献