Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2′-O-methylation via NOP58 recruitment in colorectal cancer

Author:

Wu Huizhe,Qin Wenyan,Lu Senxu,Wang Xiufang,Zhang Jing,Sun Tong,Hu Xiaoyun,Li Yalun,Chen Qiuchen,Wang Yuanhe,Zhao Haishan,Piao Haiyan,Zhang Rui,Wei Minjie

Abstract

Abstract Background Increasing evidence supports the role of small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) as master gene regulators at the epigenetic modification level. However, the underlying mechanism of these functional ncRNAs in colorectal cancer (CRC) has not been well investigated. Methods The dysregulated expression profiling of lncRNAs-snoRNAs-mRNAs and their correlations and co-expression enrichment were assessed by GeneChip microarray analysis. The candidate lncRNAs, snoRNAs, and target genes were detected by in situ hybridization (ISH), RT-PCR, qPCR and immunofluorescence (IF) assays. The biological functions of these factors were investigated using in vitro and in vivo studies that included CCK8, trans-well, cell apoptosis, IF assay, western blot method, and the xenograft mice models. rRNA 2′-O-methylation (Me) activities were determined by the RTL-P assay and a novel double-stranded primer based on the single-stranded toehold (DPBST) assay. The underlying molecular mechanisms were explored by bioinformatics and RNA stability, RNA fluorescence ISH, RNA pull-down and translation inhibition assays. Results To demonstrate the involvement of lncRNA and snoRNAs in 2′-O-Me modification during tumorigenesis, we uncovered a previously unreported mechanism linking the snoRNPs NOP58 regulated by ZFAS1 in control of SNORD12C, SNORD78 mediated rRNA 2′-O-Me activities in CRC initiation and development. Specifically, ZFAS1 exerts its oncogenic functions and significantly up-regulated accompanied by elevated NOP58, SNORD12C/78 expression in CRC cells and tissues. ZFAS1 knockdown suppressed CRC cell proliferation, migration, and increased cell apoptosis, and this inhibitory effect could be reversed by NOP58 overexpression in vitro and in vivo. Mechanistically, the NOP58 protein could be recognized by the specific motif (AAGA or CAGA) of ZFAS1. This event accelerates the assembly of SNORD12C/78 to allow for further guiding of 2′-O-Me at the corresponding Gm3878 and Gm4593 sites. Importantly, silencing SNORD12C or 78 reduced the rRNAs 2′-O-Me activities, which could be rescued by overexpression ZFAS1, and this subsequently inhibits the RNA stability and translation activity of their downstream targets (e.g., EIF4A3 and LAMC2). Conclusion The novel ZFAS1-NOP58-SNORD12C/78-EIF4A3/LAMC2 signaling axis that functions in CRC tumorigenesis provides a better understanding regarding the role of lncRNA-snoRNP-mediated rRNAs 2′-O-Me activities for the prevention and treatment of CRC.

Funder

the National Natural Science Foundation of China

National Natural Science Foundation of China and Liaoning joint fund key program

Liaoning Revitalization Talents Program

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3