Author:
Jiang Ming-jie,Chen Yi-yun,Dai Juan-juan,Gu Dian-na,Mei Zhu,Liu Fu-rao,Huang Qian,Tian Ling
Abstract
Abstract
Background
Tumor repopulation is a major cause of radiotherapy failure. Previous investigations highlighted that dying tumor cells played vital roles in tumor repopulation through promoting proliferation of the residual tumor repopulating cells (TRCs). However, TRCs also suffer DNA damage after radiotherapy, and might undergo mitotic catastrophe under the stimulation of proliferative factors released by dying cells. Hence, we intend to find out how these paradoxical biological processes coordinated to potentiate tumor repopulation after radiotherapy.
Methods
Tumor repopulation models in vitro and in vivo were used for evaluating the therapy response and dissecting underlying mechanisms. RNA-seq was performed to find out the signaling changes and identify the significantly changed miRNAs. qPCR, western blot, IHC, FACS, colony formation assay, etc. were carried out to analyze the molecules and cells.
Results
Exosomes derived from dying tumor cells induced G1/S arrest and promoted DNA damage response to potentiate survival of TRCs through delivering miR-194-5p, which further modulated E2F3 expression. Moreover, exosomal miR-194-5p alleviated the harmful effects of oncogenic HMGA2 under radiotherapy. After a latent time, dying tumor cells further released a large amount of PGE2 to boost proliferation of the recovered TRCs, and orchestrated the repopulation cascades. Of note, low-dose aspirin was found to suppress pancreatic cancer repopulation upon radiation via inhibiting secretion of exosomes and PGE2.
Conclusion
Exosomal miR-194-5p enhanced DNA damage response in TRCs to potentiate tumor repopulation. Combined use of aspirin and radiotherapy might benefit pancreatic cancer patients.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Oncology,Molecular Medicine
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献