CircMET promotes tumor proliferation by enhancing CDKN2A mRNA decay and upregulating SMAD3

Author:

Yang Lei,Chen Yi,Liu Ning,Lu Yanwen,Ma Wenliang,Yang Zhenhao,Gan Weidong,Li DongmeiORCID

Abstract

Abstract Background Functions of CircMET (hsa_circ_0082002) which is a circular RNA and derived from MET gene remain understood incompletely. In the present study, Xp11.2 translocation/NONO-TFE3 fusion renal cell carcinoma (NONO-TFE3 tRCC) with up-regulated CircMET was employed to investigate its mechanism in cancer progression and post-transcriptional regulation. Methods FISH and real-time PCR were performed to explore the expression and localization circMET in NONO-TFE3 tRCC tissues and cells. The functions of circMET in tRCC were investigated by proliferation analysis, EdU staining, colony and sphere formation assay. The regulatory mechanisms among circMET, CDKN2A and SMAD3 were investigated by luciferase assay, RNA immunoprecipitation, RNA pulldown and targeted RNA demethylation system. Results The expression of circMET was upregulated by NONO-TFE3 fusion in NONO-TFE3 tRCC tissues and cells, and overexpression of circMET significantly promoted the growth of NONO-TFE3 tRCC. Mechanistic studies revealed that circMET was delivered to cytosol by YTHDC1 in N6-methyladenosine (m6A)-depend manner. CircMET enhances mRNA decay of CDKN2A by direct interaction and recruitment of YTHDF2. Meanwhile, circMET competitively absorbed miR-1197 and prevented those from SMAD3 mRNA. Conclusions CircMET promotes the development of NONO-TFE3 tRCC, and the regulation to both CDKN2A and SMAD3 of circMET was revealed. CircMET has the potential to serve as a novel target for the molecular therapy of NONO-TFE3 tRCC as well as the other cancer with high-expressing circMET.

Funder

National Natural Science Foundation of China

Nanjing Sci-Tech Development Project

Beijing Ronghe Medical Development Foundation and State Key Laboratory of Analytical Chemistry for Life Science

Nanjing University Innovation Program for PhD candidate

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3