Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance

Author:

Pothuraju Ramesh,Rachagani Satyanarayana,Krishn Shiv Ram,Chaudhary Sanjib,Nimmakayala Rama Krishna,Siddiqui Jawed A.,Ganguly Koelina,Lakshmanan Imayavaramban,Cox Jesse L.,Mallya Kavita,Kaur Sukhwinder,Batra Surinder K.ORCID

Abstract

Abstract Background Differential expression of mucins has been associated with several cancers including colorectal cancer (CRC). In normal physiological conditions, secretory mucin MUC5AC is not expressed in the colonic mucosa, whereas its aberrant expression is observed during development of colon cancer and its precursor lesions. To date, the molecular mechanism of MUC5AC in CRC progression and drug resistance remains obscure. Methods MUC5AC expression was determined in colon tissue microarray by immunohistochemistry. A RNA interference and CRISPR/Cas9-mediated system was used to knockdown/knockout the MUC5AC in CRC cell lines to delineate its role in CRC tumorigenesis using in vitro functional assays and in vivo (sub-cutaneous and colon orthotopic) mouse models. Finally, CRC cell lines and xenograft models were used to identify the mechanism of action of MUC5AC. Results Overexpression of MUC5AC is observed in CRC patient tissues and cell lines. MUC5AC expression resulted in enhanced cell invasion and migration, and decreased apoptosis of CRC cells. MUC5AC interacted with CD44 physically, which was accompanied by the activation of Src signaling. Further, the presence of MUC5AC resulted in enhanced tumorigenesis and appearance of metastatic lesions in orthotopic mouse model. Additionally, up-regulation of MUC5AC resulted in resistance to 5-fluorouracil (5-FU) and oxaliplatin, and its knockout increased sensitivity to these drugs. Finally, we observed that up-regulation of MUC5AC conferred resistance to 5-FU through down-regulation of p53 and its target gene p21 and up-regulation of β-catenin and its target genes CD44 and Lgr5. Conclusion Our findings suggest that differential expression of secretory mucin MUC5AC results in enhanced tumorigenesis and also confers chemoresistance via CD44/β-catenin/p53/p21 signaling.

Funder

National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3