Reshaping the tumor microenvironment of cold soft-tissue sarcomas with oncolytic viral therapy: a phase 2 trial of intratumoral JX-594 combined with avelumab and low-dose cyclophosphamide
-
Published:2024-02-20
Issue:1
Volume:23
Page:
-
ISSN:1476-4598
-
Container-title:Molecular Cancer
-
language:en
-
Short-container-title:Mol Cancer
Author:
Toulmonde Maud,Guegan Jean-Philippe,Spalato-Ceruso Mariella,Peyraud Florent,Kind Michèle,Vanhersecke Lucile,Le Loarer François,Perret Raul,Cantarel Coralie,Bellera Carine,Bessede Alban,Italiano Antoine
Abstract
AbstractMost soft-tissue sarcomas (STS) exhibit an immunosuppressive tumor microenvironment (TME), leading to resistance against immune checkpoint inhibitors (ICIs) and limited therapeutic response. Preclinical data suggest that oncolytic viral therapy can remodel the TME, facilitating T cell accumulation and enhancing the immunogenicity of these tumors.We conducted the METROMAJX, a phase II clinical trial, to investigate the combination of JX-594, an oncolytic vaccinia virus engineered for selective tumor cell replication, with metronomic cyclophosphamide and the PD-L1 inhibitor avelumab in patients with advanced, ‘cold’ STS, characterized by an absence of tertiary lymphoid structures. The trial employed a two-stage Simon design. JX-594 was administered intratumorally at a dose of 1.109 pfu every 2 weeks for up to 4 intra-tumoral administrations. Cyclophosphamide was given orally at 50 mg twice daily in a week-on, week-off schedule, and avelumab was administered at 10 mg/kg biweekly. The primary endpoint was the 6-month non-progression rate.Fifteen patients were enrolled, with the most frequent toxicities being grade 1 fatigue and fever. Fourteen patients were assessable for efficacy analysis. At 6 months, only one patient remained progression-free, indicating that the trial did not meet the first stage endpoint of Simon’s design. Analysis of sequential tissue biopsies and plasma samples revealed an increase in CD8 density and upregulation of immune-related protein biomarkers, including CXCL10.Intra-tumoral administration of JX-594 in combination with cyclophosphamide and avelumab is safe and capable of modulating the TME in cold STS. However, the limited efficacy observed warrants further research to define the therapeutic potential of oncolytic viruses, particularly in relation to specific histological subtypes of STS.
Funder
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Reference14 articles.
1. Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, Jeng YM, Hsiao LP, Lacroix L, Bougoüin A, Moreira M, Lacroix G, Natario I, Adam J, Lucchesi C, Laizet YH, Toulmonde M, Burgess MA, Bolejack V, Reinke D, Wani KM, Wang WL, Lazar AJ, Roland CL, Wargo JA, Italiano A, Sautès-Fridman C, Tawbi HA, Fridman WH. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577(7791):556–60. 2. Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol. 2022;19(7):441–57. 3. Vanhersecke L, Brunet M, Guégan JP, Rey C, Bougouin A, Cousin S, Moulec SL, Besse B, Loriot Y, Larroquette M, Soubeyran I, Toulmonde M, Roubaud G, Pernot S, Cabart M, Chomy F, Lefevre C, Bourcier K, Kind M, Giglioli I, Sautès-Fridman C, Velasco V, Courgeon F, Oflazoglu E, Savina A, Marabelle A, Soria JC, Bellera C, Sofeu C, Bessede A, Fridman WH, Loarer FL, Italiano A. Mature tertiary lymphoid structures predict immune checkpoint inhibitor efficacy in solid tumors independently of PD-L1 expression. Nat Cancer. 2021;2(8):794–802. 4. Kessler T, Wick W. Oncolytic virotherapy: potentially a game-changing tumor treatment. Cancer Cell. 2021;39(6):753–5. 5. Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13(1):84.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|