Abstract
Abstract
Background
Undergraduate biomedical engineering (BME) students interested in pursuing a career in research and development of medical or physiological monitoring devices require a strong foundation in biosignal analysis as well as physiological theory. Applied learning approaches are reported to be effective for reinforcing physiological coursework; therefore, we propose a new laboratory protocol for BME undergraduate physiology courses that integrates both neural engineering and physiological concepts to explore involuntary skeletal muscle reflexes. The protocol consists of two sections: the first focuses on recruiting soleus motor units through transcutaneous electrical nerve stimulation (TENS), while the second focuses on exploring the natural stretch reflex with and without the Jendrassik maneuver. In this case study, third-year biomedical engineering students collected electromyographic (EMG) activity of skeletal muscle contractions in response to peripheral nerve stimulation using a BioRadio Wireless Physiology Monitor system and analyzed the corresponding signal parameters (latency and amplitude) using the MATLAB platform.
Results/protocol validation
Electrical tibial nerve stimulation successfully recruited M-waves in all 8 student participants and F-waves in three student participants. The students used this data to learn about orthodromic and antidromic motor fiber activation as well as estimate the neural response latency and amplitude. With the stretch reflex, students were able to collect distinct signals corresponding to the tendon strike and motor response. From this, they were able to estimate the sensorimotor conduction velocity. Additionally, a significant increase in the stretch reflex EMG amplitude response was observed when using the Jendrassik maneuver during the knee-jerk response. A student exit survey on the laboratory experience reported that the class found the module engaging and helpful for reinforcing physiological course concepts.
Conclusion
This newly developed protocol not only allows BME students to explore physiological responses using natural and electrically-induced involuntary reflexes, but demonstrates that budget-friendly commercially available devices are capable of eliciting and measuring involuntary reflexes in an engaging manner. Despite some limitations caused by the equipment and students’ lack of signal processing experience, this new laboratory protocol provides a robust framework for integrating engineering and physiology in an applied approach for BME students to learn about involuntary reflexes, neurophysiology, and neural engineering.
Funder
IBBME Courseware Development Funds
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering
Reference23 articles.
1. Linsenmeier RA, Saterbak A. Fifty years of biomedical engineering undergraduate education. Ann Biomed Eng. 2020;48(6):1590–615.
2. Clase KL, Hein PW, Pelaez NJ. Demand for interdisciplinary Laboratories for Physiology Research by undergraduate students in biosciences and biomedical engineering. Adv Physiol Educ. 2008;32(4):256–60.
3. Barros C, Leao CP, Soares F, Minas G, Machado J. Issues in remote laboratory developments for biomedical engineering education. 2013 Int Conf Interact Collab Learn ICL 2013. 2013;(September):290–295.
4. Sandham WA, Hamilton DJ. Pedagogical issues for effective teaching of biosignal processing and analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2947–50 EMBC’10.
5. T de J, Linn MC, Zacharia ZC. Physical and virtual laboratories in science and engineering education. Science. 2013;340(6130):305–9.