Investigation of two metabolic engineering approaches for (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis

Author:

Vikromvarasiri Nunthaphan,Noda Shuhei,Shirai Tomokazu,Kondo Akihiko

Abstract

Abstract Background Flux Balance Analysis (FBA) is a well-known bioinformatics tool for metabolic engineering design. Previously, we have successfully used single-level FBA to design metabolic fluxes in Bacillus subtilis to enhance (R,R)-2,3-butanediol (2,3-BD) production from glycerol. OptKnock is another powerful technique for devising gene deletion strategies to maximize microbial growth coupling with improved biochemical production. It has never been used in B. subtilis. In this study, we aimed to compare the use of single-level FBA and OptKnock for designing enhanced 2,3-BD production from glycerol in B. subtilis. Results Single-level FBA and OptKnock were used to design metabolic engineering approaches for B. subtilis to enhance 2,3-BD production from glycerol. Single-level FBA indicated that deletion of ackA, pta, lctE, and mmgA would improve the production of 2,3-BD from glycerol, while OptKnock simulation suggested the deletion of ackA, pta, mmgA, and zwf. Consequently, strains LM01 (single-level FBA-based) and MZ02 (OptKnock-based) were constructed, and their capacity to produce 2,3-BD from glycerol was investigated. The deletion of multiple genes did not negatively affect strain growth and glycerol utilization. The highest 2,3-BD production was detected in strain LM01. Strain MZ02 produced 2,3-BD at a similar level as the wild type, indicating that the OptKnock prediction was erroneous. Two-step FBA was performed to examine the reason for the erroneous OptKnock prediction. Interestingly, we newly found that zwf gene deletion in strain MZ02 improved lactate production, which has never been reported to date. The predictions of single-level FBA for strain MZ02 were in line with experimental findings. Conclusions We showed that single-level FBA is an effective approach for metabolic design and manipulation to enhance 2,3-BD production from glycerol in B. subtilis. Further, while this approach predicted the phenotypes of generated strains with high precision, OptKnock prediction was not accurate. We suggest that OptKnock modelling predictions be evaluated by using single-level FBA to ensure the accuracy of metabolic pathway design. Furthermore, the zwf gene knockout resulted in the change of metabolic fluxes to enhance the lactate productivity.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3