Mixed culture biocatalytic production of the high-value biochemical 7-methylxanthine

Author:

Mock Meredith B.,Summers Ryan M.

Abstract

Abstract Background 7-Methylxanthine, a derivative of caffeine noted for its lack of toxicity and ability to treat and even prevent myopia progression, is a high-value biochemical with limited natural availability. Attempts to produce 7-methylxanthine through purely chemical methods of synthesis are faced with complicated chemical processes and/or the requirement of a variety of hazardous chemicals, resulting in low yields and racemic mixtures of products. In recent years, we have developed engineered microbial cells to produce several methylxanthines, including 3-methylxanthine, theobromine, and paraxanthine. The purpose of this study is to establish a more efficient biosynthetic process for the production of 7-methylxanthine from caffeine. Results Here, we describe the use of a mixed-culture system composed of Escherichia coli strains engineered as caffeine and theobromine “specialist” cells. Optimal reaction conditions for the maximal conversion of caffeine to 7-methylxanthine were determined to be equal concentrations of caffeine and theobromine specialist cells at an optical density (600 nm) of 50 reacted with 2.5 mM caffeine for 5 h. When scaled-up to 560 mL, the simple biocatalytic reaction produced 183.81 mg 7-methylxanthine from 238.38 mg caffeine under ambient conditions, an 85.6% molar conversion. Following HPLC purification and solvent evaporation, 153.3 mg of dried 7-methylxanthine powder was collected, resulting in an 83.4% product recovery. Conclusion We present the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 7-methylxanthine from caffeine using a mixed culture of E. coli strains. This process constitutes the most efficient method for the production of 7-methylxanthine from caffeine to date.

Funder

U.S. Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3