Paper-based in vitro tissue chip for delivering programmed mechanical stimuli of local compression and shear flow

Author:

Kaarj KattikaORCID,Madias Marianne,Akarapipad Patarajarin,Cho Soohee,Yoon Jeong-YeolORCID

Abstract

Abstract Mechanical stimuli play important roles on the growth, development, and behavior of tissue. A simple and novel paper-based in vitro tissue chip was developed that can deliver two types of mechanical stimuli—local compression and shear flow—in a programmed manner. Rat vascular endothelial cells (RVECs) were patterned on collagen-coated nitrocellulose paper to create a tissue chip. Localized compression and shear flow were introduced by simply tapping and bending the paper chip in a programmed manner, utilizing an inexpensive servo motor controlled by an Arduino microcontroller and powered by batteries. All electrical compartments and a paper-based tissue chip were enclosed in a single 3D-printed enclosure, allowing the whole device to be independently placed within an incubator. This simple device effectively simulated in vivo conditions and induced successful RVEC migration in as early as 5 h. The developed device provides an inexpensive and flexible alternative for delivering mechanical stimuli to other in vitro tissue models. Graphical abstract

Funder

National Heart, Lung, and Blood Institute

Development and Promotion of Science and Technology Talents Project (DPST) of Thailand

One District One Scholarship (ODOS) of Thailand

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3