Automated classification of urine biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks

Author:

Karar Mohamed Esmail,El-Fishawy Nawal,Radad Marwa

Abstract

Abstract Background Early diagnosis of Pancreatic Ductal Adenocarcinoma (PDAC) is the main key to surviving cancer patients. Urine proteomic biomarkers which are creatinine, LYVE1, REG1B, and TFF1 present a promising non-invasive and inexpensive diagnostic method of the PDAC. Recent utilization of both microfluidics technology and artificial intelligence techniques enables accurate detection and analysis of these biomarkers. This paper proposes a new deep-learning model to identify urine biomarkers for the automated diagnosis of pancreatic cancers. The proposed model is composed of one-dimensional convolutional neural networks (1D-CNNs) and long short-term memory (LSTM). It can categorize patients into healthy pancreas, benign hepatobiliary disease, and PDAC cases automatically. Results Experiments and evaluations have been successfully done on a public dataset of 590 urine samples of three classes, which are 183 healthy pancreas samples, 208 benign hepatobiliary disease samples, and 199 PDAC samples. The results demonstrated that our proposed 1-D CNN + LSTM model achieved the best accuracy score of 97% and the area under curve (AUC) of 98% versus the state-of-the-art models to diagnose pancreatic cancers using urine biomarkers. Conclusion A new efficient 1D CNN-LSTM model has been successfully developed for early PDAC diagnosis using four proteomic urine biomarkers of creatinine, LYVE1, REG1B, and TFF1. This developed model showed superior performance on other machine learning classifiers in previous studies. The main prospect of this study is the laboratory realization of our proposed deep classifier on urinary biomarker panels for assisting diagnostic procedures of pancreatic cancer patients.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3