Optimized polymer-based glucose release in microtiter plates for small-scale E. coli fed-batch cultivations

Author:

Keil Timm,Dittrich Barbara,Lattermann Clemens,Büchs JochenORCID

Abstract

Abstract Background Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. Recently, the polymer-based feeding system was introduced to allow fed-batch conditions in microtiter plates. Maximum glucose release rates of 0.35 mg/h per well (48-well-plate) at 37 °C can be achieved with these plates, depending on the media properties. The fed-batch cultivation of fluorescent protein-expressing E. coli at oxygen transfer rate levels of 5 mmol/L/h proved to be superior compared to simple batch cultivations. However, literature suggests that higher glucose release rates than achieved with the currently available fed-batch microtiter plate are beneficial, especially for fast-growing microorganisms. During the fed-batch phase of the cultivation, a resulting oxygen transfer rate level of 28 mmol/L/h should be achieved. Results Customization of the polymer matrix enabled a considerable increase in the glucose release rate of more than 250% to up to 0.90 mg/h per well. Therefore, the molecular weight of the prepolymer and the addition of a hydrophilic PDMS-PEG copolymer allowed for the individual adjustment of a targeted glucose release rate. The newly developed polymer matrix was additionally invariant to medium properties like the osmotic concentration or the pH-value. The glucose release rate of the optimized matrix was constant in various synthetic and complex media. Fed-batch cultivations of E. coli in microtiter plates with the optimized matrix revealed elevated oxygen transfer rates during the fed-batch phase of approximately 28 mmol/L/h. However, these increased glucose release rates resulted in a prolonged initial batch phase and oxygen limitations. The newly developed polymer-based feeding system provides options to manufacture individual feed rates in a range from 0.24–0.90 mg/h per well. Conclusions The optimized polymer-based fed-batch microtiter plate allows higher reproducibility of fed-batch experiments since cultivation media properties have almost no influence on the release rate. The adjustment of individual feeding rates in a wide range supports the early process development for slow, average and fast-growing microorganisms in microtiter plates. The study underlines the importance of a detailed understanding of the metabolic behavior (through online monitoring techniques) to identify optimal feed rates.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3