Author:
Kim Soyon,Fan Jiabing,Lee Chung-Sung,Chen Chen,Bubukina Ksenia,Lee Min
Abstract
Abstract
Background
Demineralized bone matrix (DBM), an allograft bone processed to better expose osteoinductive factors such as bone morphogenetic proteins (BMPs), is increasingly used for clinical bone repair. However, more extensive use of DBM is limited by its unpredictable osteoinductivity and low bone formation capacity. Commercial DBM products often employ polymeric carriers to enhance handling properties but such carriers generally do not possess bioactive functions. Heparin is a highly sulfated polysaccharide and is shown to form a stable complex with growth factors to enhance their bioactivities. In this study, a new heparinized synthetic carrier for DBM is developed based on photocrosslinking of methacrylated glycol chitosan and heparin conjugation.
Results
Heparinized chitosan exerts protective effects on BMP bioactivity against physiological stressors related to bone fracture healing. It also enhances the potency of BMPs by inhibiting the activity of BMP antagonist, noggin. Moreover, heparinized chitosan is effective to deliver bone marrow stromal cells and DBM for enhanced osteogenesis by sequestering and localizing the cell-produced or DBM-released BMPs.
Conclusions
This research suggests an essential approach of developing a new hydrogel carrier to stabilize the bioactivity of BMPs and improve the clinical efficacy of current bone graft therapeutics for accelerated bone repair.
Funder
National Institutes of Health
U.S. Department of Defense
MTF Biologics
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biomedical Engineering,Environmental Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献